## University of Texas at Austin

## Quiz \# 11

Option gamma. The delta-gamma-theta approximation.
Please, provide your complete solution to the following problem. Final answers without shown reasoning will get zero points.

Problem 11.1. ( 5 points) Assume the Black-Scholes model. Let the current price of a non-dividend-paying stock be equal to $\$ 80$ per share. Its volatility is 0.20 .

The continuously compounded risk-free interest rate is 0.04 .
Consider a one-year, at-the-money European call option on the above stock. The current delta of the call option is 0.6179 . What is the current gamma of the call option?

Solution: Using our IFM tables, or differentiating, we know that

$$
\Gamma_{C}(S(0), 0)=\frac{e^{-\delta T} N^{\prime}\left(d_{1}(S(0), 0)\right)}{S(0) \sigma \sqrt{T}}=\frac{N^{\prime}\left(d_{1}(S(0), 0)\right)}{S(0) \sigma}
$$

From the given value of the call's delta, we have that

$$
N\left(d_{1}(S(0), 0)\right)=0.6179 \quad \Rightarrow \quad d_{1}(S(0), 0)=0.3
$$

So, the gamma of the call equals

$$
\Gamma_{C}(S(0), 0)=\frac{N^{\prime}(0.3)}{80(0.2)}=\frac{\frac{1}{\sqrt{2 \pi}} e^{-\frac{0.09}{2}}}{16}=0.0238367
$$

Problem 11.2. ( 5 points) Assume the Black-Scholes model. Let the current stock price be $\$ 100$. Consider an option on this stock such that its current price is $\$ 3.65$, its delta is -0.4182 , and its gamma is 0.016 . What will the approximate price of this option be should the stock price rise to $\$ 104$ in a small time interval?

Solution: We use the delta-gamma approximation, and get

$$
\begin{aligned}
v(S(d t), d t) & \approx v(S(0), 0)+\Delta(S(0), 0)(d s)+\frac{1}{2} \Gamma(S(0), 0)(d s)^{2} \\
& =3.65+(-0.4182)(4)+\frac{1}{2}(0.016)(4)^{2}=2.1052
\end{aligned}
$$

Problem 11.3. (5 points) Assume the Black-Scholes model. Bertie Wooster was looking at stock-price and option data from yesterday. He decides to pose his friend Tuppy Glossop a riddle. Bertie tells Tuppy the following about yesterday's price of a stock and information on an option on this stock:

- the stock price yesterday was greater than $\$ 77$;
- the option's price was $\$ 2.45$;
- the option's delta was -0.1814;
- the option's gamma was 0.04;
- the option's theta was 0.01 per day.

Tuppy is allowed to see today's stock price and today's option price. They turn out to be $\$ 80$ and $\$ 2.20$, respectively. What is Tuppy going to guess to be yesterday's stock price?

Solution: Using the delta-gamma-theta approximation, we get that

$$
2.20=2.45+(-0.1814) d s+\frac{1}{2}(0.04)(d s)^{2}+0.01
$$

Simplifying the above quadratic equation, we obtain

$$
0.02(d s)^{2}-0.1814 d s+0.26=0 \quad \Leftrightarrow \quad(d s)^{2}-9.07 d s+13=0
$$

Solving for $d s$, we get

$$
d s_{1,2}=\frac{9.07 \pm \sqrt{9.07^{2}-4(13)}}{2}=\frac{9.07 \pm 5.50135}{2}
$$

The two solutions are

$$
d s_{1}=1.7843 \quad \text { and } \quad d s_{2}=7.2857
$$

We conclude that yesterday's stock price was $\$ 78.22$.

