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Abstract

The present work can be placed in the realm of asymp-
totic stochastic optimal control in the setting of time-varying
stochastic networks. More precisely, our aim is to identify
controls that are asymptotically optimal (with respect to
some specific, relevant performance measures) in the uni-
form acceleration regime (i.e., the limit of large mean arrival
and service rates) and determine how well they perform for
actual systems. More specifically, we consider a single sta-
tion and a tandem queueing network and use the framework
of strong approximations to identify asymptotically optimal
controls both in the fluid regime as well as in the second-
order or “diffusion” regime. The latter requires an appro-
priate extension to the non-stationary context of the usual
notion of asymptotic optimality used for stationary networks
in heavy traffic.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Limiting regimes in stochastic networks

For the most part, stochastic networks are not tractable in any immediate sense (e.g., it is
not possible to obtain closed-form expressions for quantities of obvious interest, for instance,
the waiting time). More precisely, functions of the primitives of the system (say, measures
of performance such as the sojourn time or delay) are not readily available in a closed form.
Hence, an asymptotic approach towards performance analysis and optimal control of stochastic
networks must be taken. Given that this thesis is aimed at the study of several control problems,
we will mainly focus on the optimal control aspects of the existing literature.

The “conventional” regime In the “conventional” regime, the number of servers is kept
fixed at a finite number, while space and time are scaled. One line of research has been dedicated
to fluid models. Most of these results are in the context of network design for time-homogeneous
systems (see [Mey01], [Mey03] and references therein). A noteworthy example of a fluid model
in the time-inhomogeneous setting is [CADX04] in which the authors look at an optimal re-
source allocation control problem for a (stochastic) fluid model with multiple classes, where the
controller dynamically schedules different classes in a system which experiences an overload over
a transient period of time.

On the other hand, an immense body of work is dedicated to time-homogeneous systems
in heavy traffic. Here, under appropriate assumptions on the convergence of the net arrival
and service rates, the approach of the traffic intensity towards its critical level of stability 1 is
ensured by speeding up time by a factor N while scaling the queue lengths down by a factor√

N . Formally passing to the limit per the just described scaling, one obtains a reflected diffusion
process. Then, the corresponding Brownian control problem (henceforth abbreviated as BCP)
can be formulated, and an attempt to identify optimal or asymptotically optimal polices can be
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CHAPTER 1. INTRODUCTION 6

made (see, e.g., [Wil00] for references on this subject). A concise overview of the basic principles
of heavy-traffic analysis and control in the time homogeneous case is given in [Har90] by the
pioneer of this method M. J. Harrison.

Another asymptotic regime that has become a focus of attention in recent years is the so-
called “Halfin-Whitt” regime, in which the number of servers is scaled up by an index N , while
the number of customers in the queue and the number of idle servers are scaled down by either N

(for fluid scaling) or
√

N (for diffusion scaling). For more on control problems in this setting, one
should consult [AMR04] and references therein. This thesis focuses on optimal control problems
for time-inhomogeneous systems in the conventional asymptotic regime.

1.1.2 Time-dependent queueing systems

Most real-world queueing systems evolve according to laws that vary with time. A considerable
body of literature has been devoted to the study of time-homogeneous models. While these
models may provide reasonably good approximations for slowly varying systems, they completely
fail to capture many important time-dependent phenomena such as periodicity and surges in
demand. In particular, controls that are designed to optimize a specific performance measure
in a stationary network may be significantly sub-optimal in the presence of significant temporal
variations. It is, therefore, crucial to understand how to design optimal controls in the presence
of non-stationarity. The present work takes a step in that direction.

Of course, there are exceptions to the above statements, as in the case of [Hal91]. Moreover,
there is the study of the Mt/G/∞ queue (i.e., the queue with arrivals modeled by a time-
inhomogeneous Poisson process, i.i.d. potential service times and infinitely many servers) in
[EMW93b], and its continuation in the case of sinusoidal arrival rates [EMW93a]. The latter
paper also contains an application of the findings gathered in the sinusoidal case to the case of
general periodic arrival rates. Furthermore, stochastic networks consisting of queues of the above
type (time-varying Poisson exogenous arrival processes and infinitely many servers) have been
considered in [MW93]. A succinct survey of available methods can be found in [Mas02] - a rich
source of references on the analysis of time-varying queues. Although, this work is motivated by
applications in telecommunications, the results are general. An alternative approach to handling
the difficulties presented by time-inhomogeneity uses computer simulations. One example is
[GK95] where simple peak-hour approximation is analysed.

Uniform acceleration The same rationale as in the time-homogeneous case discussed above
brings forth consideration of asymptotic behavior as a remedy for the difficulties time-inhomo-
geneity presents. The type of asymptotic analysis needs to be appropriate to the model and
simplify the technical aspects of the problem while retaining the features of the system that are
crucial to the specific problem at hand. We first note that when studying time-inhomogeneous
stochastic networks, a scaling of time, as described in the context of “conventional” heavy traffic,
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is not an option. In fact, such an approach would result in the homogenization of the problem
and elimination of the time-dependence.

An attempt at combining the theory of queues with stationary stochastic arrivals with the
deterministic theory of time-dependent queues is present in the work of Newell (see [New68a],
[New68b] and [New68c]). This work was later incorporated into and expanded upon in [New71].
These papers focus on the study of a queue as it transitions through saturation (e.g., as the arrival
rate increases and reaches the constant service rate) and goes back from the maximum queue
length to the equilibrium (e.g., as the arrival rate decreases). In addition, a “mild rush-hour”
phenomenon is explored as the same tools which work in the study of the first two transitions
are not applicable here. The heuristic analysis in all these works is based on the diffusion equa-
tion (Fokker-Planck equation) for the distribution of the queue length. This strategy hints at
the direction of later efforts in building a framework for asymptotics in time-varying queues.
A systematic treatment similar in spirit to the intuitive one of Newell (although completely
unrelated) was developed by Keller and can be found in [Kel82]. Therein, the author uses a
small scaling parameter in order to derive formal asymptotic expansions of the queue length at
a certain time in the Mt/Mt/1 setting (i.e., in the case of a single server queue with nonhomoge-
neous Poisson arrivals and independent exponentially distributed potential service times). Also,
different phases of the system depending on its saturation are defined in this work.

Most of the work in this thesis is based on [MM95] - a rigorous treatment of the above works.
There, the arrival and the potential departure rates are scaled up by N , while the queue lengths
are scaled down by N . In this framework, the arrival and potential departure rates are scaled
by the same factor, and the method itself is referred to as the uniform acceleration method. The
authors of [MM95] employ the theory of strong approximations (see, e.g., [CR81] and [CH93])
to develop a Taylor-like expansion of sample paths of queue lengths, establishing a Functional
Strong Law of Large Numbers and a Functional Central Limit Theorem. Furthermore, the
demanding task of identifying explicit forms of the first order (in the almost sure sense) and
second order (in the distributional sense) approximations of the queue lengths is accomplished.
Chapter 9 of [Whi02a] relaxes some technical assumptions posited in [MM95] and exhibits some
more general results. An off-shoot of the expansion of the queue length developed in [MM95] is
the study of the second order approximation term in the said expansion in terms of a directional
derivative of the one-sided regulation map (in an appropriate topology on the path-space). In
fact, this is the basis of the exposition in [Whi02a]. This point of view inspired the development of
a purely mathematical theory aimed at understanding and evaluating the directional derivatives
of more general regulation maps generated by stochastic networks with more elaborate routing.
The reader is directed to [MR06] for an intuitive introduction into this theory, as well as an
overview of related references.

The analysis in [HHBM06] is very illustrative of the natural environment of processor sharing
for the the uniform acceleration method and it introduces the important notion of sojourn time
in this setting. Another point of view regarding the use of strong approximations is taken in
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[Hor92]. In this paper the author studies the rate of convergence of the expected values and
distributions of queue length processes when they are approximated by (reflected) Brownian
motions in the context of strong approximation theory.

1.1.3 Contributions of this thesis

Our aim in the present work is to identify controls that are asymptotically optimal (with respect
to some specific performance measures) in the uniform acceleration regime (i.e., the limit of
large mean arrival and service rates) and determine how well they perform for actual systems.
More specifically, we consider a single station and a tandem queueing network and use the
framework of strong approximations to identify asymptotically optimal controls (with respect to
some relevant performance measures) both in the fluid regime as well as in the second-order or
“diffusion” regime. The latter requires an appropriate extension to the non-stationary context
of the usual notion of asymptotic optimality used for stationary networks in heavy traffic.

We should emphasize that an important motivation behind the choice of uniform acceleration
as a tool for handling the control problems presented in the sequel is the fact that this scheme
keeps the ratio between the arrival rate (a parameter) and the service rate (the control) constant.
This hints at the robustness of this approach with respect to the choice of scaling of actual
parameters in preparation for the asymptotic analysis.

Before formulating the asymptotic optimal control problems, we highlight some unique as-
pects of time-inhomogeneous systems.

Flow of information Let us briefly return to optimal control in the time-homogeneous setting
(say, the Brownian control problem (BCP) mentioned in Subsection 1.1.1). In that context, the
only option for the control of a given system is the so-called “feedback” control, i.e., control
which observes the system and is dynamically adapted according to the state that the system
is in. To accommodate the information available to the controller, a filtration generated by the
stochastic processes driving the model of the system at hand (reflected diffusions in the BCP
case) is constructed.

On the other hand, for the asymptotic analysis in the time-inhomogeneous setting, it is
possible to consider deterministic controls that are prescribed by the controller in advance of
the run of the system and which depend on the given parameters of the model of the system.
In fact, in Theorems 3.4.8, 3.4.10 and 4.8.11 we provide classes of deterministic asymptotically
optimal policies for particular performance measures. However, as we can see in Section 4.7,
there are specific models and sets of parameters where the optimal perfromance which can be
achieved with stochastic (i.e., state-dependent) policies cannot be approached by a sequence
of deterministic policies. Therefore, we must formulate the structure of the accumulation of
information over time in dependence on the past and present states of the system. This is done
in Appendix B. The formulation and solution of an asymptotic optimal control problem which
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requires stochastic optimal policies is carried out in Section 4.6, the main result being Theorem
4.6.23.

Performance analysis The main source of tools for performance analysis for this thesis is
[MM95]. To ensure relative self-containedness, the main results of [MM95], as well as some
useful consequences, are exhibited in Subsection 1.2.2.

Implementation The idea behind the implementation of the asymptotic regimes discussed
above is imagining that the “actual” system is embedded in a sequence of systems approaching
(in an appropriate sense) the limiting system. The question of interpretation of the results of the
performance analysis and solutions to the optimal controls problems in this setting is natural.
This is of particular importance in the case of optimal control, as we would like for the proposed
optimal policies to be implementable in the actual system which inspired the problem in the
first place. In the case of Brownian control problems (BCPs), this connection is more-or-less
straightforward (see, e.g., Section 5.5 of [Whi02b] for an overview of this subject). On the other
hand, in the case of time-inhomogeneous queues it is not immediately clear what the appropriate
choice of the index N in the uniform acceleration corresponding to the actual system should be
(see discussion in Section 2.2.1). However, note that this method preserves the ratio between the
arrival and service rates. Bearing this in mind and considering Theorems 3.4.8, 3.4.10, 4.6.23
and 4.8.11, we can see that there are classes of optimal policies whose (asymptotic) performance
does not depend on the choice of the index assigned to the actual system. More precisely, in the
case of Theorems 3.4.8, 3.4.10 and 4.8.11 the optimal policies themselves can be constructed in
a manner rendering them independent of the choice of the index. In the case of Theorem 4.6.23,
it is the asymptotic performance of the proposed class that does not depend on N .

Applications The above mentioned expository paper [Mas02] considers the applications of
time-varying stochastic networks to telecommunications. In the context of computer engineering,
our work is closest to the fields of power aware scheduling and temperature aware scheduling (see,
e.g., [BKP04]). Finally, as we will explain in some more detail when formulating the problems,
the models we consider can be readily interpreted in optimization of manufacturing systems (see,
e.g., Subsection 3.1.5).

Organization of the thesis The remainder of the present chapter contains the notation valid
throughout the rest of the text and some preliminary results needed in later chapters. For the
reader’s convenience, all main results are gathered and displayed in Chapter 2. Also, the general
philosophy behind our approach is presented and placed within the context of the existing
literature. Chapter 3 is dedicated to the detailed study of the single-station control problems,
while Chapter 4 deals with the tandem system. Finally, there is an Appendix containing all the
auxiliary results.
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Remark 1.1.1. All simulation results displayed in this thesis which involve time-inhomogeneous
Poisson processes were done by discretizing (equidistantly) the rate functions. The values as-
signed to the discretized rates on any interval in the equidistant grid were the values of the
actual rate at the left endpoint of the interval. The rates we used in the simulations were all
sufficiently smooth to justify this approach.

1.2 Notation and Preliminaries

This section is dedicated to the introduction of all the notation and some preliminary results
that are used repeatedly throughout the rest of the thesis.

1.2.1 Notation

Function Spaces and Mappings

• L0
+(Ω,F , P) denotes the set of all nonnegative random variables on the probability space

(Ω,F , P);

• L1[0, T ] denotes the set of all integrable functions defined on [0, T ];

• L1
+[0, T ] denotes the set of all non-negative integrable functions defined on the domain

[0, T ];

• A denotes the space of all functions F : [0, T ] → R, of the form F (t) =
∫ t
0 f(s)ds, with

f ∈ L1[0, T ];

• A+ denotes the space of all functions F : [0, T ] → R, of the form F (t) =
∫ t
0 f(s)ds, with

f ∈ L1
+[0, T ];

• I : L1[0, T ] → A is the (integral) mapping I(f) =
∫ ·
0 f(s)ds, for f ∈ L1[0, T ];

• D denotes the set of all real-valued right-continuous functions on [0, T ] with finite left
limits at all points in (0, T ];

• || · ||T is the uniform convergence norm on the space D.

Processes

• N+ and N− are independent, unit Poisson processes defined on a common probability
space (Ω,F , P);

• N+
1 , N−

1 and N−
2 are independent, unit Poisson processes defined on (Ω,F , P)
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1.2.2 Preliminaries

Tail Sets

For the sake of completeness, we describe the meaning of the sets {An, ev.} (An happens eventu-
ally, i.e., for all but finitely many n) and {An, i.o.} (An happens infinitely often), for a sequence
{An} of measurable sets on our probability space. These events are defined by

{An, ev.} =





∑

n≥1

1Ac
n

< ∞




 =
⋃

n≥1

⋂

k≥n

Ak,

{An, i.o.} =





∑

n≥1

1An = ∞




 =
⋂

n≥1

⋃

k≥n

Ak.

(1.2.1)

Reflection Maps

Definition 1.2.1. The one-dimensional (one-sided) reflection map on D is denoted by Γ : D →
D and defined as

Γ(x) = x + l, for every x ∈ D, (1.2.2)

where l ∈ D is the unique nondecreasing mapping satisfying
∫ T

0
Γ(x)(t)dl(t) = 0,

i.e., l is “flat” on the region where Γ(x) > 0.

The mapping Γ is also referred to as the Skorokhod map on [0,∞), named after A. V.
Skorokhod who introduced this mapping for continuous functions in [Sko61]. The function l has
a well known explicit form

l(t) = sup
s≤t

[−x(s)]+, for every t ∈ [0, T ], (1.2.3)

which justifies the uniqueness claim from the above definition (see, e.g., p. 439 of [Whi02b]
or Section 2.2 of [Har90]). Moreover, for every other nondecreasing function y ∈ D satisfying
y + x ≥ 0, we have that

y(t) = sup
s≤t

[y(s)]+ ≥ sup
s≤t

[−x(s)]+ = l(t), for every t ∈ [0, T ]. (1.2.4)

In other words, the function l is the minimal element (in the partial ordering of pointwise
comparison) of the set {y ∈ D : x + y ≥ 0}.



CHAPTER 1. INTRODUCTION 12

From the explicit expressions given in (1.2.2) and (1.2.3), it is easy to see that the mapping
Γ is Lipschitz continuous in the uniform and M1 topologies (see Lemma 13.5.1. and Theorem
13.5.1. in [Whi02b]).

A generalization of the Skorokhod map that constrains functions to remain in a bounded
interval follows:

Definition 1.2.2. We denote the two-sided reflection map restricting functions in D to the
region [0,K] by ΓK : D→ D and define it by

ΓK(x) = q = x + l − u, for all x ∈ D, (1.2.5)

where (q, l, u) is the unique triplet in D3 such that

(i) the functions l, u ∈ D are nondecreasing;

(ii) l is “flat” on the region where q > 0, i.e.,
∫ T
0 q(t) dl(t) = 0;

(iii) u is “flat” on the region where q < K, i.e.,
∫ T
0 (q(t)−K) du(t) = 0.

We will refer to l and u as the regulator functions associated with x and K.

In the terminology of Definition 1.2 of [KLRS06] and following our present notation, one
would say that the pair (q, l− u) solves the Skorokhod problem on [0,K] for x (see also Section
14.8 of [Whi02b] for a discussion of the two-sided reflection map).

The lower regulator map l and the upper regulator map u of Definition 1.2.2 can be tied
together through the following well-known pair of identities

l(t) = sup
s≤t

[−x(s) + u(s)]+, u(t) = sup
s≤t

[x(s)− l(s)−K]+, for every t. (1.2.6)

The above identities are mentioned as equation (1.9) in [KLRS06], and are justified in Section
14.8 of [Whi02b] and Section 2.4 of [Har90].

Next, we present the useful minimality feature of the regulators l and u from (1.2.5), analo-
gous to the one expressed earlier (see (1.2.4)) in the context of the one-sided reflection map.

Proposition 1.2.3. Given K ∈ (0,∞) and x ∈ D such that x(0) = 0, let (q, l, u) be the
unique triplet associated with K and x as specified in Definition 1.2.2. Then, for all nonnegative
nondecreasing l′ and u′ such that the function q′ = x + l′ − u′ is constrained within [0,K], we
have that l ≤ l′ and u ≤ u′.

Proof. Let (q, l, u) and (q′, l′, u′) be as in the statement of the lemma. We define the following
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sequence1 of instances in [0, T ]

t0 = 0,

t1 = inf{t ≥ 0 : q(t) = K} ∧ T,

t2i = inf{t ≥ t2i−1 : q(t) = 0} ∧ T, for every i ∈ N,

t2i+1 = inf{t ≥ t2i : q(t) = K} ∧ T, for every i ∈ N.

Claim: There exists an index J such that tj = T, for every j ≥ J. Let us suppose that,
contrary to the posited claim, there exist countably many excursions of the path q across the
strip [0,K]. Since the sequence {tj} is nondecreasing and bounded from above by T , it must be
convergent. Let us denote its limit by ξ.

Since q ∈ D, it has left limits at all points in [0, T ]. In particular, let us denote by ζ the left
limit of q at ξ, i.e., let ζ = q(ξ−). By definition, then, for an arbitrary positive constant ε, there
exists another positive constant δ such that for every t > ξ − δ, we have that |q(t)− ζ| < ε. On
the other hand, since tj → ξ, there exists an index jδ such that for every j > jδ we have that
tj > ξ − δ. Thus, for every j > jδ, it must be that |q(tj) − ζ| < ε. Choosing ε = K

5 produces a
contradiction with the definition of the sequence {tj}.

“Mathematical Induction” We continue with the proof of the main claim. The strategy is
to prove the claim in an “inductive” manner starting with time 0 and progressing towards time
T considering one interval of the form [tj−1, tj), 1 ≤ j ≤ J , at a time.

By definition, we have that u(t) = 0 for every t ∈ [0, t1). Hence, we can conclude that u ≤ u′

on [0, t1). At the same time, due to the first identity in (1.2.6), we deduce that

l(t) = sup
s≤t

[−x(s) + u(s)]+ = sup
s≤t

[−x(s)]+.

As q′ and u′ are both nonnegative, we have that x′ + l′ ≥ 0. Reiterating the argument of
(1.2.4), we get that l ≤ l′ on [0, t1).

Next, we focus on the interval [t1, t2). Since the process q does not visit 0 during this interval,
we immediately get that the function l remains constant, i.e., l(t) = l(t1), for every t ∈ [t1, t2).
As we have already proven that l(t1) ≤ l′(t1) and since the function l′ is nondecreasing, we
deduce that l(t) ≤ l′(t), for every t ∈ [t1, t2).

Simultaneously, by the second equality in (1.2.6), we have that

u(t) = sup
s≤t

[x(s) + l(s)−K]+ ≤ sup
s≤t

[q′(s) + u′(s)−K]+, for every t ∈ [t1, t2).

Since q′ ≤ K and u′ is, by assumption, nondecreasing, the last display gives us that u ≤ u′ on
[t1, t2).

1Since x ∈ D, the possibility of uncountably many instances of the type described below is immediately ruled

out.
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So far we proved that the announced minimality of l and u holds true on [0, t2). In the spirit
of the principle of mathematical induction, let us assume that the minimality property holds on
[0, t2k), for some k ≥ 1. We aim to prove that the analogous claim holds on [t2k, t2k+2).

On [t2k, t2k+1), we have that q < K, so there is no need for upper regulation during this
period, i.e., u(t) = u(t2k), for every t ∈ [t2k, t2k+1). Consequently, using once more the first
identity in (1.2.6) and the inductive hypothesis, we arrive at

l(t) = sup
s≤t

[−x(s) + u(s)]+ ≤ sup
s≤t

[−x(s) + u′(s)]+ = sup
s≤t

[−q′(s) + l′(s)]+

for every t ∈ [t2k, t2k+1]. Since q′ is, by construction, nonnegative and the function l′ is nonde-
creasing, we get l ≤ l′ on the entire interval [0, t2k+1).

Finally, we focus on the interval [t2k−1, t2k). On this interval, the function q is always
strictly positive, which implies that l(t) = l(t2k−1), for every t ∈ [t2k−1, t2k). As above, this
straightforwardly implies that l ≤ l′ on [t2k−1, t2k). On the other hand, thanks to the second
equality in (1.2.6) and the facts that q′ ≤ K and u′ in nondecreasing, the upper regulator u

satisfies the following chain of (in)equalities

u(t) = sup
s≤t

[x(s) + l(s)−K]+ ≤ sup
s≤t

[q′(s) + u′(s)−K]+ ≤ sup
s≤t

[u′(s)]+ = u′(t),

for every t ∈ [t2k+1, t2k).

The following consequence of Theorem 4.2 of [BW92] will be used extensively in the sequel.
We simply restate the result using the notation we introduced above.

Proposition 1.2.4. Let {xn} be a sequence in D converging uniformly to a function x ∈ D and
let the sequence {(qn, ln, un)} denote the triplets uniquely determined by the two-sided regulator
map applied to the terms in the sequence {xn}. Then we have that (qn, ln, un) → (q, l, u), in the
uniform topology, where (q, l, u) is the triplet generated by the two-sided regulator map applied
to the function x.

Limit Theorems

The next result is a by-product of the proof of Theorem 2.1 from [MM95].2

Theorem 1.2.5 (FSLLN). Let λ and µ be nonnegative, integrable functions on [0, T ] and let
N+ and N− be independent unit Poisson processes on a common probability space. Define the
sequence of stochastic processes {X(n)} as

X(n) = N+(nI(λ))−N−(nI(µ)). (1.2.7)

2In the cited paper, the authors have a standing assumption that µ is strictly positive - an assumption we are

not making anywhere. However, the proof of this particular claim presented in their paper does not use the strict

positivity assumption.
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Figure 1.1: Runs of a single station with rates λ(t) = 1 + cos(2πt) and µ = 1
2λ. The uniform

acceleration indices are n = 50, 100, 500.
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Then we have that in the uniform topology

1
n

X(n) → I(λ− µ), a.s. (1.2.8)

In the rest of the text, we will refer to the last theorem as the Functional Strong Law of
Large Numbers or FSLLN. An illustration of Theorem 1.2.5 by way of simulations is given in
Figure 1.1.

The following corollary is a simple consequence of Theorem 1.2.5 and Proposition 1.2.4.

Corollary 1.2.6. Suppose that the sequence of random processes {X(n)} is defined as in (1.2.7).
Let the sequence of triplets of stochastic processes obtained through the application of the two-
sided reflection map to the terms in the said sequence be denoted by {(Q(n), L(n), U (n))} and let
(q, l, u) be the triplet obtained by applying the two-sided reflection mapping of Definition 1.2.2
to the function x = I(λ− µ). Then we have that as n →∞,

(
1
n

Q(n),
1
n

L(n),
1
n

U (n)

)
→ (q, l, u), a.s., (1.2.9)

in the uniform topology.

The following result addresses the second order approximations of the queue length processes.
It will be referred to as the Functional Central Limit Theorem or FCLT.

Theorem 1.2.7 (FCLT). Suppose that the functions λ and µ, as well as processes {X(n)} are
as in Theorem 1.2.5. Let the sequence of stochastic processes {Q(n)} be given as Q(n) = Γ(X(n)),
and let q̄ = Γ(I(λ− µ)). Then we have that

√
n

(
1
n

Q(n) − q̄

)
⇒ Q̂,



CHAPTER 1. INTRODUCTION 16

in distribution, with respect to the M1 topology, where for every t ∈ [0, T ] the process Q̂ is
determined by

Q̂t
(d)
= W (It(λ + µ)) + sup

s∈Φ−I(λ−µ)(t)
[−W (Is(λ + µ))],

with

Φξ(t) = {s ≤ t : sup
u≤t

[ξ(u)] = ξ(s)},

for any ξ ∈ C[0, T ] and where W is a standard Brownian motion.

The origin of the above result is [MM95]. There, it was stated under the additional restriction
that the process Q̂ have only a finite number of discontinuities on any compact set. However,
this condition can be done away with as is shown, e.g., in [Whi02a] and [MR06]. We illustrate
the FCLT in Figure 1.2. The first box displays the fluid limits of the arrival and departure
rates, the netput and the queue length. The vertical lines represent the partition of [0, T ] into
the regions where the system is:

• overloaded, i.e., where the fluid limit of the queue length strictly positive;

• critical, i.e., where the fluid limit of the queue length is at 0 and there is no upward pushing
in the Skorokhod map;

• underloaded, i.e., where the fluid limit of the queue length is at 0 and there is upward
pushing in the Skorokhod map.

The second box displays the results of several simulations of the scaled queue length and the
second order approximation processes

q̄ +
1√
n

Q̂

with the index of acceleration n = 50. Finally, the third box shows the process Q̂ itself.
Both the FSLLN and the FCLT are consequences of the Strong Approximation Theorem

which we state next in the form in which it was exhibited in [MM95].

Theorem 1.2.8 (Strong Approximation). The sequence of stochastic processes {Q(n)} can be
realized on a common probability space, also supporting two independent standard Brownian
motions W+ and W− in a way that

Q(n) = Γ(X̃(n)) + O(log(n)),

where

X̃(n) = nI(λ− µ) + W+(nI(λ))−W−(nI(µ)).
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Figure 1.2: Functional Central Limit Theorem
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Chapter 2

Main Results

2.1 Outline

This thesis is dedicated to a detailed study of a family of optimal control problems of time-
inhomogeneous stochastic networks. The emphasis in this work is on the methodology, so the
network aspects (network topologies and stochastic models), as well as the performance aspects
(forms of the performance measures and controls) are kept simple. In the present section, we
briefly describe all optimal control problems which appear in this thesis.

As a mnemonic aid for the reader going through the descriptions of various optimal control
problems, we provide a tableau which encompasses all the main results (see Figure 2.1). Each
cell in the table, except for the shaded right cell in the second row, corresponds to an optimal
control problem that is considered in the thesis. The reader is advised to consult Subsection
1.2.1 for notation and standing assumptions for the entire thesis.

2.1.1 The General Philosophy

In the next chapter we describe several control problems associated with time-inhomogeneous
queueing networks. In each case, an exact analytic solution is not feasible. Thus, we embed
the actual system into a sequence of systems with arrival rates (and buffer capacities, where
applicable) tending to infinity, and identify a sequence of controls which are asymptotically
optimal in the sense described precisely below. This sequence of systems is constructed by
means of the so-called “uniform acceleration” scaling appropriate as the “pre-limit sequence”.

In many cases, the identification of the class of asymptotically optimal sequence of con-
trols is facilitated by first solving certain related, but simpler, first-order (or fluid) and/or
second-order control problems. The first-order problems arise from taking FSLLN limits of
the original systems, and thus usually lead to the formulation of deterministic control prob-
lems. Second-order problems, on the other hand, also take into account certain fluctuations
around the FSSLN limits. In the case of a time-homogeneous queueing system, the second-

18
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Figure 2.1: The Layout of Control Problems
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order approximation of a queueing network is usually given by a reflected diffusion. So, in this
case, the second-order approximation of the original control problem leads to a single reflected
diffusion control problem. The methodology of using fluid and diffusion control problems to
identify asymptotically optimal controls is fairly well-developed in the time-homogeneous set-
ting (see, for example, [DR00, Mey01, Mey03, Dup03] for the use of fluid control problems and
[Har90, HVM97, AHS05, Kus01] for the use of diffusion control problems). In contrast, in the
time-inhomogeneous case, there is relatively little rigorous work in this domain (see, e.g., [New71]
for some heuristics). Indeed, one of the main aims of this thesis is to take a step towards devel-
oping a suitable methodology for optimal control in the time-inhomogeneous case. As shown in
Theorem 1.2.7, in the time-inhomogeneous case, the second-order approximation of the pre-limit
sequence is given by another sequence of simpler processes, rather than a single process. Thus, in
this case, the second-order approximation of the pre-limit sequence of control problems leads to
another sequence of control problems for which an asymptotically optimal sequence of controls
needs to be determined. The second-order approximation is useful only when the second-order
sequence of control problems proves easier to analyze than the pre-limit sequence of control
problems. In the following sections, we describe the fluid limit, second-order (when applica-
ble) and pre-limit versions of several control problems related to time-inhomogeneous queueing
networks. In Section 2.2 we consider a single station and examine two different performance
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measures in Subsections 2.2.1 and 2.2.2, while in Section 2.3 we consider a tandem network and
again consider two different performance measures in Subsections 2.3.1 and 2.3.2.

Before delving into the descriptions of particular optimal control problems, let us pause to
ask some general questions regarding the rationale discussed above.

(i) How does one formulate the second-order control problem (the control problem analogous
to the diffusion control problem in the time-homogeneous case) for time-inhomogeneous
systems?

(ii) Does the consideration of the second-order approximations and the corresponding optimal
control problem(s) shed more light on the optimal control of the pre-limit systems than
the first-order approximation does alone?

(iii) We emphasize again that the concept of deterministic control that is based on the mean
time-varying arrival rates (possibly gathered through observations of the system in the
past), but is not dependent on the actual states of the system in the actual (controlled)
run of the system, arises exclusively in the time-inhomogeneous setting. Is it possible to
provide deterministic optimal controls, or does one need to resort to stochastic controls
that are dynamically adjusted depending on the state of the system?

(iv) How does one apply the results in the context of asymptotically optimal control problems
to the actual system? More precisely, as we will see in more detail below (see Subsection
2.2.1), the embedding of the actual system into a sequence of uniformly accelerated systems
demands a choice of the “constant of acceleration” of the actual system. Thus, the above
question may be understood as the following one: In which way does the choice of the
“constant of acceleration” affect the choice of the control one proposes for the actual system
and/or the performance of the chosen control in a run of the actual system?

The above issues are discussed in Section 2.4 in the context of specific optimal control
problems considered in this thesis.

2.2 Single Station

2.2.1 The Finite Buffer Context

We consider a single station that has a finite buffer capacity KA and has one server serving
one job class on a finite time-horizon [0, T ]. The exogenous arrival rate is modeled as an in-
homogeneous Poisson process with rate λA, where λA (the mean exogenous arrival rate) is a
deterministic, non-negative and integrable function1. The (potential) service process is assumed

1The superscript A is used in this section to emphasize that the parameter λA is associated with an actual

system. As discussed below, in our analysis, the actual system will be embedded in a sequence of systems with
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Figure 2.2: Single Station with a Finite Buffer

to be another Poisson process that is independent of the arrival Poisson process and has rate
µA, where µA is allowed to be random, assuming values in L1

+[0, T ], but is non-anticipating (see
Chapter B for a precise definition) and satisfies I(µA)T ≤ mA. Note that when µA is determin-
istic, the latter inequality translates into a bound on the mean total (potential) service provided
in the interval [0, T ]. Any such service rate µA will be referred to as an admissible control. The
system described above is depicted in Figure 2.2.

The finiteness of the buffer may cause a loss of jobs from the system. The control problem of
interest is to find an optimal admissible (potential) service rate µA that minimizes the number
of jobs lost from the system during the interval [0, T ]. Since an exact analytic solution of this
problem is not feasible, we embed the actual system into a sequence of systems with arrival
rates and buffer capacities tending to infinity, and identify a sequence of controls that are
asymptotically optimal (in the sense stated precisely in Definition 3.4.2). As described below,
this sequence of systems is obtained by uniformly accelerating the arrival rates and service rates
(see the discussion on the uniform acceleration scaling given in Subsection 1.2.2).

For any constant N ∈ N, let λ, K and m be such that KA = NK, λA = Nλ and mA = Nm.
The sequence of systems is then defined as follows. For each n ∈ N and an admissible service
discipline µ ∈ L1

+[0, T ] (which now satisfies IT (µ) ≤ nm), consider a station with buffer capacity
nK, the exogenous arrival process given by N+(nI(λ)) and the potential service process given
by N−(nI(µ)), where N+ and N− are independent Poisson processes. In the nth system, the
length of the queue then equals

Q(n)(µ,K) = ΓnK(X(n)(µ)),

where ΓnK is the two-sided reflection map introduced in Definition 1.2.2 and X(n) is the so-called
netput process defined by

X(n)(µ) = N+(nI(λ))−N−(nI(µ)). (2.2.1)

Our goal is then to identify the sequence {µn} of admissible controls that (in the asymptotic
limit as n → ∞) minimizes the number of jobs lost in the nth system due to finiteness of the

buffer capacities and arrival rates tending to infinity. The superscript is used here to show how the asymptotic

results can be used to make inferences about an actual system with a given finite buffer capacity KA and arrival

rate λA. However, the superscript will be omitted in subsequent sections for ease of notation.
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buffer. This is described below as the Pre-limit Sequence problem. The identification of the
optimal sequence for the pre-limit problem is facilitated by first solving a simpler, deterministic
control problem related to the so-called fluid or FSSLN limit of this sequence (described in
Theorem 1.2.5). This is stated as the fluid limit problem below.

The Fluid Limit [Fully covered in Subsection 3.2.2.]

The Model We look at the process

Q̄(µ,K) = X̄(µ) + L̄(µ,K)− Ū(µ,K), (2.2.2)

with X̄(µ) = I(λ−µ) and where L̄(µ,K) and Ū(µ,K), as in Definition 1.2.2, are the regulators
associated with X̄(µ) and K.

The Performance Measure The fluid-limit version of the performance measure correspond-
ing to the jobs lost due to the finiteness of the buffer is

ŪT (µ,K).

The Result The entire class of policies that are optimal for the above control problem is fully
described in Subsection 3.2.2. A short description of fluid-optimal service disciplines is that they
do not cause

• upward pushing during the entire interval [0, T ], i.e., L̄T (µ,K) = 0 for all fluid-optimal µ;

• downward pushing until time τ(K + m) = inf{t ∈ [0, T ] : It(λ) > K1 + m}.

In the case that IT (λ) > K +m, this is an equivalence result, otherwise the above conditions are
merely sufficient for fluid-optimality. One representative fluid-optimal policy is µ∗ = λ1[0,τ(m)].

The Pre-limit Sequence [Fully covered in Subsection 3.4.2.]

The model Based on Definition 1.2.2, we can express the queue length in the nth system as

Q(n)(µ,K) = X(n)(µ) + L(n)(µ,K)− U (n)(µ,K),

where random processes L(n)(µ,K) and U (n)(µ,K) are the regulators associated with X(n)(µ)
and nK as per Definition 1.2.2.

The Performance Measure The number of jobs lost from the system over the time interval
[0, T ] is recorded in the amount of regulation needed to restrict the netput process below the
level K, i.e., the number of lost jobs when the service discipline µ is used is exactly the random
variable U (n)

T (µ,K). Upon necessary normalization, the quantity we wish to minimize (in the
limit, almost surely) across controls µ becomes 1

nU (n)
T (µ,K).
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Figure 2.3: Sequence of Single Stations with Infinite Buffers

The Result Here we succeed in obtaining a class of deterministic control sequences which are
asymptotically optimal in the sense of Definition 3.4.2. In an informal way, this class can be
described as containing all sequences of admissible deterministic service disciplines {µn} such
that the “mean” of the queue length, given by ΓK(I(λ−µn)), remains “a bit more than” o( 1√

n
)

away from the boundaries of the strip [0,K] as long as the constraint on the total amount of
service allows it to. This simple rule enables the controller to avoid both upward and downward
pushing for all but finitely many n in the almost sure sense, until the amount of service rendered
reaches the imposed constraint.

2.2.2 The Infinite Buffer Context

Having discussed the rationale for doing so in the context of the finite buffer, we immediately
proceed to the sequence of systems constructed through the uniform acceleration procedure. In
this case, the queue lengths are given by

Q(n)(µ) = Γ(X(n)(µ)), (2.2.3)

for every admissible µ (again, see Chapter B for the definition of admissibility), and where
X(n)(µ) is the netput process from (2.2.1) and Γ the one-sided reflection map of Definition 1.2.1.
A schematic description of one system in this sequence can be seen in Figure 2.3.

The positive constants nK now represent thresholds and the performance of a control is
measured in terms of the time the buffer exceeds that level. In other words, the penalty incurred
in a run of the system equals the amount of time the queue length spends above the level nK.

The Fluid Limit [Fully covered in Subsection 3.2.1.]

The Model The fluid-limit process in this case is

Q̄(µ) = X̄(µ) + L̄(µ),

where X̄(µ) = I(λ− µ) and L̄(µ) emerges from decomposition (1.2.2) in Definition 1.2.1.
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Figure 2.4: Fluid arrival rates, departure rates and limits of the queue lengths for three fluid-
optimal policies, where λ(t) = 1 + cos(2πt), K = 0.4 and m = 0.25.
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The Performance Measure An admissible policy µ causes the penalty of
∫ T

0
1{Q̄t(µ)>K} dt.

The Result The class of fluid-optimal controls is identical to the one in the fluid-limit analysis
in the finite buffer case above.

Three different fluid-optimal policies are displayed in Figure 2.4. In the three graphs, the
function which dominates the other two is the arrival rate, the functions which is (most of the
time) dominated by the other two is the departure rate (i.e., a fluid-optimal policy), and the
remaining curve represents the fluid limit of the queue length with the stated rates. In the order
in which the fluid limits of the queue lengths appear in the figure, the policies are defined as
follows:

(i) µ = 1
2λ until I(µ) reaches the constraint m;

(ii) µ = 0 until I(λ) reaches the threshold; then, µ = λ until I(µ) reaches the constraint m;

(iii) µ = 0 until I(λ) covers half the distance to the threshold; then, µ = λ until I(µ) reaches
the constraint m.

Second Order Approximations [Fully covered in Section 3.3]

We now return our attention to the sequence of processes {Q(n)(µ)} introduced in (2.2.3), for
any µ ∈ L1

+[0, T ]. Theorems 2.1 and 2.2 in [MM95] or Theorem 9.6.2 in [Whi02a] both deliver
the asymptotic expansion of the form

1
n

Q(n)
t (µ)

(d)
= Q̄t(µ) +

1√
n

Q̂t(µ) + o

(
1√
n

)
. (2.2.4)
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In fact, this expression is given as equation (2.7) in [MM95]. The processes

Q̄(µ) +
1√
n

Q̂(µ) (2.2.5)

can be interpreted as second order approximations of the processes 1
nQ(n)(µ) in a distributional

sense.
In view of (2.2.4), we can relate the amount of time the queue length in the nth pre-limit

system modeled by (2.2.3) spends above the threshold K to the amount of time the random
process on the right-hand side of (2.2.4) spends above K. More precisely, we consider a sequence
of performance measures of the form

meas
{

t ∈ [0, T ] : Q̄t(µ) +
1√
n

Q̂t(µ) > K

}
. (2.2.6)

It is reasonable to expect that asymptotically optimal results on second order optimality in
the sense of minimization of the expected value of the expression in (2.2.6) across deterministic
service disciplines will provide insight in asymptotic performance of the pre-limit sequence.

The Model For any deterministic control µ we introduce the random process

Q̂(µ) = W (I(λ + µ)) + sup
s∈Φ−X̄(µ)(·)

[−W (Is(λ + µ))],

where W is a standard Brownian motion and

Φ−X̄(µ)(t) =
{

s ≤ t : −X̄s(µ) = sup
u≤t

[−X̄u(µ)]
}

, for all t ∈ [0, T ],

with X̄(µ) = I(λ− µ).

The Performance Measure The controller wishes to minimize the expected value of

meas
{

t ∈ [0, T ] : Q̄t(µ) +
1√
n

Q̂t(µ) > K

}

in an asymptotic sense and across all admissible deterministic controls µ.

The Result The second order optimal class we identify contains all deterministic service dis-
ciplines {µn} such that the “mean” of the queue length Γ(I(λ−µn)) is “more than” o( 1√

n
) away

from the boundaries of the strip [0,K] (until the allowed amount of service is used up).2

2The exact nature of the difference between the two classes, which we attempt to express by means of the

imprecise wordings “more than” and “a bit more than” modifying o( 1√
n
), will be exhibited in the main text.
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Figure 2.5: Fluid limit of the queue length and several runs of the second order approximation
process of (2.2.5) for n = 100 with λ(t) = 1 + cos(2πt) and µ(t) = λ(t), for t such that
It(λ) ∈ [K2 , K

2 + m], where K = 0.4 and m = 0.25.
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Also, the class of second order optimal sequences is a superclass of the class of all asymp-
totically optimal sequences for the control problem involving the pre-limit sequence of systems
with finite buffers. In other words, all sequences of policies that we identified as asymptotically
optimal for the pre-limit sequence of systems with finite buffers will also be second order optimal
in the infinite-buffer context. Figure 2.5 illustrates this result.

The Pre-limit Sequence [Fully covered in Subsection 3.4.1]

The model The queue lengths are given by Q(n)(µ) = Γ(X(n)(µ)).

The Performance Measure The controller wishes to (asymptotically) minimize, in the al-
most sure sense, the value ∫ T

0
1{ 1

nQ(n)
t (µ)>K} dt

by varying the admissible control µ.
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Figure 2.6: Fluid limit of the queue length and several runs of the scaled pre-limit queue lengths
with λ(t) = 1 + cos(2πt) and µ(t) = λ(t), for t such that It(λ) ∈ [3K

4 , 3K
4 + m], where K = 0.4

and m = 0.25.
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The Result The class of asymptotically optimal policies we provide is the same as the class de-
scribed in the finite buffer case. Several simulated runs of the queue length for an asymptotically
optimal policy are displayed in Figure 2.6.

2.3 The Tandem Network

2.3.1 The Finite Buffer Context

We consider a two-station tandem queueing network, with each station having a single server
and a finite buffer capacity. The process of exogenous arrivals into the first station and the
processes of potential services from both stations are independent, nonhomogeneous Poisson
processes. The capacities of the two finite buffers are denoted by K1,K2 ∈ R+ ∪ {∞}. The
system is shown in Figure 2.7. The controller’s aim is to minimize the number of jobs lost in
both stations due to the finiteness of the two buffers by means of varying the service rate at
the first station among all non-anticipating services satisfying a given constraint on the total
amount of service available.
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Figure 2.7: The Tandem System - Finite Buffers

The Fluid Limit [Fully covered in Section 4.5]

The Model The fluid-limit versions of the queue lengths in the system depicted in Figure 2.7
and described above are

Q̄(1)(µ,K1) = I(λ− µ) + L̄(1)(µ,K1)− Ū (1)(µ,K1),

Q̄(2)(µ,K2) = I(µ− µ2)− L̄(1)(µ,K1) + L̄(2)(µ,K2)− Ū (2)(µ,K2),

where L̄(1)(µ,K1) and Ū (1)(µ,K1) are the regulators associated with I(λ− µ) and K1 through
Definition 1.2.2, and L̄(2)(µ,K2) and Ū (2)(µ,K2) are the regulators associated with the function
I(µ− µ2)− L̄(1)(µ,K1) and K2 per Definition 1.2.2.

The Performance Measure The goal is to minimize

Ū (1)
T (µ,K1) + Ū (2)

T (µ,K2)

over all admissible deterministic µ.

The Result We show that the policy which promptly serves all customers that arrive into the
first station, as long as the resulting departures from the first station do not cause downward
pushing in the second station and until the given upper bound on the amount of service is met
is a fluid-optimal policy. We shall refer to this specific policy as µ∗,F .

The Pre-limit Sequence [Fully covered in Section 4.8]

The Model The uniform acceleration procedure in this case gives rise to the following sequence
of pairs of queue lengths

Q(1,n)(µ,K1) = N+
1 (nI(λ))−N−

1 (nI(µ)) + L(1,n)(µ,K1)− U (1,n)(µ,K1),

with L(1,n)(µ,K1) and U (1,n)(µ,K1) representing the regulator maps associated with the process
N+

1 (nI(λ))−N−
1 (nI(µ)) and the constant nK1 per Definition 1.2.2, and

Q(2,n)(µ,K2) = N−
1 (nI(µ))− L(1,n)(µ,K1)−N−

2 (nI(µ2))

+ L(2,n)(µ,K2)− U (2,n)(µ,K2),

where the regulator maps L(2,n)(µ,K2) and U (2,n)(µ,K2) are associated with N−
1 (nI(µ)) −

L(1,n)(µ,K1)−N−
2 (nI(µ2)) and nK2 according to Definition 1.2.2.
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Figure 2.8: The Tandem system - Infinite buffers

The Performance Measure For every index n, the penalty associated with the admissible
service discipline µ is the expected value of

U (1,n)
T (µ,K1) + U (2,n)

T (µ,K2).

The Result We show that an asymptotically optimal sequence can be constructed by simply
employing µ∗,F in every pre-limit station. This turns out to be a consequence of an elegant
FSLLN-type result (see Proposition 1.2.4). The shortcomings (possible “waste” of service in the
first station or downward pushing in the second one) of this service discipline in the pre-limit
can be easily rectified using a bit more general form of the o( 1√

n
)-rule from the result for the pre-

limit sequences in the single station setting. However, we have already gathered understanding
of the consequences of imposing the o( 1√

n
)-rule on a fluid-optimal policy when we considered

the single station.

2.3.2 The Infinite Buffer Context

We retain the arrival and departure processes described in the finite-buffer setting and set
the buffers in both stations to be infinite. The constants K1 and K2 are now understood as
thresholds. There is a unit penalty accumulated in each station for the time the queue length
spends above its respective threshold.

We immediately delve into the sequence of uniformly accelerated systems. The queue length
processes are

Q(1, n)(µ) = N+
1 (nI(λ))−N−

1 (nI(µ)) + L(1, n)(µ),

Q(2, n)(µ) = N−
1 (nI(µ)) − L(1, n)(µ)−N−

2 (nI(µ2)) + L(2, n)(µ),
(2.3.1)

where the processes L(1, n)(µ) and L(2, n)(µ) are the regulating terms arising from the application
of the one-dimensional reflection map Γ of Definition 1.2.1 to processes N+

1 (nI(λ))−N−
1 (nI(µ))

and N−
1 (nI(µ)) −L(1, n)(µ)−N−

2 (nI(µ2)), respectively. One system in this sequence is depicted
in Figure 2.8.
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The Fluid Limit [Fully covered in Section 4.4]

The Model Given a fixed deterministic service discipline µ, we consider the following pair of
queue lengths in the fluid-limit

Q̄(1)(µ) = I(λ)− I(µ) + L̄(1)(µ),

Q̄(2)(µ) = I(µ)− L̄(1)(µ)− I(µ2) + L̄(2)(µ),

where

L̄(1)(µ) = sup
s≤·

[−Is(λ− µ)],

L̄(2)(µ) = sup
s≤·

[−Is(µ) + L̄(1)
s (µ) + Is(µ2)].

The Performance Measure In analogy with the single station case, the constants K1 and
K2 are considered as thresholds and the fluid-limit performance measure is given by

meas{t ∈ [0, T ] : Q̄(1)
t (µ) > K1} + meas{t ∈ [0, T ] : Q̄(2)

t (µ) > K2},

for every admissible deterministic control µ.

The Result Again a comparison with the pooled counterpart (shown in Figure 2.9) delivers
a class of fluid-optimal disciplines defined by the following three features:

• there is no upward pushing in the first station,

• at no time does the queue length in the second station cross over the threshold K2,

• at any instant the first queue is above its threshold only if the pooled queue is above its
threshold.

Figure 2.9: The pooled queue - Infinite buffer

The particular fluid-optimal discipline we identify in the present case follows the same rules
as the fluid-optimal policy µ∗,F of the finite-buffer case: no lower regulation in the first station
and no penalty incurred in the second station. The implemented disciplines can have different
explicit forms, as the reflection maps are different in the infinite and the finite buffer cases.
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The Pre-limit Sequence [Fully covered in Section 4.6]

The Model The lengths of queues in the pre-limit systems are already displayed in (2.3.1).

The Performance Measure For every n and every admissible control µ, the performance
measure is

∫ T

0

[
1{ 1

nQ(1, n)
t (µ)>K1}

+ 1{ 1
nQ(2, n)

t (µ)>K2}

]
dt.

We wish to asymptotically minimize its expected value.

The Result We propose an asymptotically optimal class of sequences of stochastic controls.
This class consists of sequences of service rates that depend on the state of the system - the rates
are set to zero whenever the first queue is empty or the second queue is at the upper threshold.
In all other states of the systems, the controlled rates are set to increase with the index n “much
faster” than the uniformly accelerated rates of arrivals in the first station and service in the
second. The exact nature of the asymptotic behavior within the proposed class of controls is
elaborated on in Section 4.6. Moreover, we show the existence of a set of parameters for which
there is no deterministic asymptotically optimal control sequence.

2.4 The Overall Strategy

To complete the overview of the results, we exhibit the “finite automaton” diagram in Figure 2.10
which contains the relationships between the different control problems in the single station case.
Starting with the upper left corner and following the arrows, we develop the train of thought
which is the backdrop for all the control problems tackled individually later in the text. A
step-by-step verbal description would go as follows:

1. We start with the general formulation of the control problem aiming to minimize the
number of lost jobs.

2. Realizing the potential complications arising from the use of the two-sided regulation
mapping, we decide to focus on a simpler network - the one with an infinite buffer - and
consider the control problem associated with the time the queue length spends across a
given threshold. This is not the same problem as the original one, but exhibits similarities.

3. The exact analysis is hard, so we proceed with a commonly used strategy of embedding
the “real” system in a sequence of uniformly accelerated ones.

4. We pose and solve the associated control problems in the fluid-limit setting, first for the
infinite buffer and then the finite buffer case.
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Figure 2.10: The Strategy - Single station

KA

λA
t µt

1

Jf (µ) → inf

nK

nλt nµt

1

J(n)(µ)

K

λt µt

1

J̄(µ)

λA
t µA

t

1

J(µ) = {t : Qt(µ) > KA} →
inf
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Figure 2.11: A fluid-optimal policy which performs poorly in the pre-limit.
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5. We introduce the novel notion of second order optimality, formulate the resulting control
problem and provide an optimal class of policies. This is conducted only in the infinite
buffer setting.

6. Informed by the optimal classes in the fluid and second order settings, we provide an
asymptotically optimal class of policies for the pre-limit sequence of systems - both for
finite and infinite buffers.

Let us briefly return to the questions we posed in the end of Subsection 2.1.1.

(i) The formulation of the second-order optimal control problem and the rationale behind it
are described above in Subsection 2.2.2.

(ii) The immediacy and self-containment of the asymptotic control problems in the sequel may
prompt the reader to question the rationale behind venturing into the second order control prob-
lem at all. The reasons for this consideration are two-fold. First, considering the second order
problems separately gave insights in the relationship between the asymptotic control problems
featuring the expected value of the penalty and the control problems employing asymptotic opti-
mality in an almost sure sense. For more on this subject, see Appendix C.5. Second, there exist
settings in which the fluid-limit analysis does not give immediate direction to how an asymptot-
ically optimal sequence is constructed and considering the second order control problem enables
the controller to obtain insight into the pre-limit behavior of the system (see Section 3.3). The
illustration of this phenomenon is given in Figure 2.11. In this example, it is clear that the con-
troller would try to keep the mean queue length sufficiently away from the boundary. However,
it is not a priori clear what “sufficiently away” stands for. The second-order optimal control
problems helps us to answer this question.
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(iii), (iv) In their full generality, these two question remain an ambition for future research.
In the context of asymptotically optimal control problems considered in this thesis, we find
that all but one (the one including the tandem system with infinite buffers, as described above
in Subsection 2.3.2) allow for deterministic asymptotically optimal policies. Also, in all the
problems we look at in this thesis, we provide classes of asymptotically optimal policies whose
limiting performance does not depend on the choice of the index corresponding to the actual
system in the uniform acceleration scheme.

2.5 On Simplifications and Extensions

All of the simplifications we state below have the purpose of not adding extra burden to the
notation, and have no methodological consequences whatsoever. We now list three simplify-
ing assumptions that were made in the descriptions of the optimal control problems above.
These assumptions were made purely for ease of exposition and notational convenience - a slight
modification of the proofs in the thesis would allow one to easily relax these assumptions.

First, throughout this work, all queues are assumed to be initially empty. This is nothing
but a convenience - all results can be carried over quite immediately to the case of nonzero
initial conditions. Secondly, the single-station study can be extended straightforwardly to the
system with feedback, i.e., the system in which some of the served jobs return to the back of
the queue with a given (not necessarily constant) probability. Finally, the same remark applies
to the addition of a feedback loop between the second station and the first queue of the tandem
system.
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Single Station

3.1 The Control Problem Set-up

3.1.1 The Model

As outlined in Subsection 2.2.1, we focus on a single station with one server serving one job class,
where λ denotes the arrival rate and µ the service rate. The rate λ is assumed deterministic,
nonnegative and integrable. However, µ can be random, taking values in L1

+[0, T ]. Reasons for
permitting stochastic service disciplines, as well as a description of their particular structure, are
provided in Subsection 3.1.3. The randomness in the arrival and the potential service processes
is modeled by independent unit Poisson processes N+ and N−, time-changed by the rates λ and
µ, respectively.

The system we look at has a finite buffer capacity denoted by K, which may cause loss of
jobs from the system. More precisely, whenever the buffer is full, a new incoming job cannot
queue up and leaves the system without being served.

3.1.2 A Sequence of Systems

As announced in Subsection 2.2.1, we proceed to construct and study a sequence of uniformly
accelerated systems based on the above data and modeling assumptions. For each n and for a
given admissible service discipline µ, the netput process is

X(n)(µ) = N+(nI(λ))−N−(nI(µ)). (3.1.1)

35
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Applying the two-sided reflection maps ΓnK of Definition 1.2.2 to X(n)(µ), we obtain the lengths
of the queues1

Q(n)(µ) = ΓnK(X(n)(µ)). (3.1.2)

3.1.3 Space of Well-Adapted Service Disciplines

We will shortly face the task of finding service disciplines that are optimal for a certain per-
formance measure. We wish to be at liberty to choose a suitable instantaneous service rate
µt, for all t ∈ [0, T ], with the assumption that the whole past of the system is known at any
time. This, in effect, means we must allow for non-deterministic µ, when controlling the prelimit
processes Q(n). Furthermore, it is expected of the controller of the system to be aware of certain
properties of the arrival process. Namely, statistics of the past behavior of the system to be
controlled (or other systems akin to it) can give a reasonable estimate of the average rate of
arrivals as a function of time. We will, hence, assume that λ ∈ L1

+[0, T ] is a completely known
(deterministic) function.

The assumptions just described - both on the model of the system given in terms of Poisson
processes, and the flow of information containing the entire arrival rate and the past of the
system - are natural. However, the formal mathematical description of these concepts turns out
to be quite technical. The definition of the space accommodating the service disciplines is given
separately in Appendix B.2. Let us rely on that construction and from now on refer to the set
of all admissible service disciplines in the nth system as L(n), for all n ∈ N. The space of all
sequences {µn} such that µn ∈ L(n), for every n ∈ N, will be denoted by L.

The specific constraint we impose on the admissible service disciplines addresses the total
amount of service available on the interval [0, T ]. Formally, given a constant m ∈ R ∪ {∞}, our
attention will be restricted, for any n, to µ ∈ L(n) such that IT (µ) ≤ m, almost surely. The
space of controls satisfying these conditions will be denoted by L(n)(m), and the space of all
admissible sequences conforming to the extra constraint will be called L(m). Note that when
µ ∈ L(n), the control effort expended in the nth system, namely nIT (µ) (see (3.1.1 )), is bounded
from above by nm.

3.1.4 Sequence of Performance Measures

Given the system described above, it is of interest to try to minimize the number of jobs lost due
to the finite buffer capacity. Our first step is to formally express this quantity as a function of
the admissible service discipline used. Thanks to the decomposition (1.2.5) of Definition 1.2.2,

1We omit the explicit mention of the threshold K from the notation for the queue length for brevity’s sake.

As there is no chance of confusion, the same convention is applied in later considerations of queues with finite

buffer capacities.
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we can expand the queue length in the nth system as

Q(n)(µ) = X(n)(µ) + L(n)(µ)− U (n)(µ), for any µ ∈ L(n), (3.1.3)

where the random processes L(n)(µ) and U (n)(µ) are associated with X(n)(µ) and nK in the
sense of Definition 1.2.2. Now, we can explicitly define the corresponding performance measure
J (n)

F : L(n)(m) → L0
+(Ω,F , P) as

J (n)
F (µ) =

1
n

U (n)
T (µ), for every µ ∈ L(n)(m). (3.1.4)

This performance measure is reasonably difficult to analyze, and so we decide to consider a
simpler control problem closely related to the one proposed above. We elaborate on this in the
following section.

3.1.5 The Infinite Buffer Problem

Instead of the system we discussed in Section 3.1 (which was depicted in Figure 2.2), we now
focus on the system with infinite buffer capacity but with the same exogenous arrival process.
The uniform acceleration scheme delivers a sequence of systems with queue lengths

Q(n)(µ) = Γ(X(n)(µ)), for every n, (3.1.5)

where X(n)(µ) is the netput process of (3.1.1) and Γ is the one-sided reflection map introduced
in Definition 1.2.1. As stated in Subsection 2.2.2, in the present context the positive constant
K plays the role of a given threshold. For every n, we define the mapping J (n) : L(n)(m) −→
L0

+(Ω,F , P) as

J (n)(µ) =
∫ T

0
1{ 1

n Q
(n)
t (µ)>K}dt, for every µ ∈ L(n)(m). (3.1.6)

The performance measures (3.1.6) can be understood as aggregated unit penalties incurred
when the (normalized) queues exceed the threshold K. For instance, this can occur in a manu-
facturing chain due to a fixed cost of an additional storage facility needed in case the capacity K

of the present facility is exceeded. Our goal is to first produce a sequence of admissible service
disciplines minimizing J (n) in the asymptotic sense which will be elaborated on in Section 3.4.

3.2 Fluid Limit

3.2.1 The Infinite-Buffer Case

We begin the analysis by approximating the sequence of systems in (3.1.5) by the fluid limit
system. For any given service discipline µ ∈ L1

+[0, T ], the Functional Strong Law of Large
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Numbers applied to the sequence of random processes {X(n)} defined in (3.1.1), yields

1
n

X(n)(µ) −→ X̄(µ), a.s. (3.2.1)

where

X̄(µ) = I(λ− µ). (3.2.2)

The convergence of processes in (3.2.1) is with respect to the uniform topology on the space D.

The continuity of the reflection map Γ then gives us
1
n

Q(n)(µ) −→ Q̄(µ), (3.2.3)

also in the uniform topology on D, where

Q̄(µ) = Γ(X̄(µ)). (3.2.4)

The expression (1.2.2) provides a decomposition of Q̄(µ) of the form

Q̄(µ) = X̄(µ) + L̄(µ),

with L̄(µ) = sup
s≤·

[−X̄(µ)]+. The natural analogue of the sequence of performance measures in

(3.1.6) in the fluid-limit setting is the performance measure J̄ : L1
+[0, T ] → R+, defined by

J̄(µ) =
∫ T

0
1{Q̄t(µ)>K}dt. (3.2.5)

In the context of the deterministic fluid approximation in (3.2.3), we choose to consider only
deterministic µ. Also, the restriction IT (µ) ≤ m on the cumulative amount of service is inherited
from the original problem described in Section 3.1. Hence, the space of admissible disciplines
for the minimization problem associated with the performance measure J̄ is

L̄(m) = {µ ∈ L1
+[0, T ] : I(µ)T ≤ m}. (3.2.6)

The simplicity of the stated control problem allows more general results which are exhibited
in Appendix C.1. To ensure a smoother flow of the argument certain statements are included
both here and in the appendix. First, mappings generating the fluid netput and queue length
processes are formally defined.

Definition 3.2.1. Mappings x, q : R+ × L1
+[0, T ] × L1

+[0, T ] → C are defined as

x(q0,λ, µ) = q0 + I(λ− µ) and q = Γ ◦ x,

for q0 ≥ 0 and where λ and µ are nonnegative, integrable functions on the segment [0, T ]. We
say that the process q : [0, T ] → R is the fluid-limit queue length process generated by λ as
arrival rate and µ as service rate, starting at q0.
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This definition allows us to rewrite the processes in (3.2.2) and (3.2.4) as X̄(µ) = x(0,λ, µ)
and Q̄(µ) = q(0,λ, µ). Next, we provide a particular partial ordering on the space of all possible
queue lengths.

Definition 3.2.2. Let q1, q2 ∈ C be such that q1 ≤ q2 almost everywhere. Then we say that q2

dominates q1, and write q1 - q2.

The stage is set for the main definition.

Definition 3.2.3. The mapping j : R+ × L1
+[0, T ] × L1

+[0, T ] → R is called an increasing
(resp.decreasing) performance measure, if for all (qi

0,λ
i, µi), i = 1, 2, such that q(q1

0,λ
1, µ1) -

q(q2
0,λ

2, µ2) (resp. q(q1
0 ,λ

1, µ1) . q(q2
0 ,λ

2, µ2)) we have j(q1
0 ,λ1, µ1) ≤ j(q2

0 ,λ
2, µ2) (resp.

j(q1
0 ,λ

1, µ1) ≥ j(q2
0 ,λ

2, µ2)). If j is either decreasing or increasing, it will be referred to as
a monotone performance measure.

Let us continue by introducing τ as the (right-continuous) inverse of the fluid limit I(λ) of
the arrival process, i.e., for every l ∈ R+, we let

τ(l) = inf{t ≥ 0 : It(λ) > l} ∧ T. (3.2.7)

Lemma 3.2.4. The mapping J̄ defined in (3.2.5) is an increasing performance measure, in the
sense that for all µ1, µ2 ∈ L̄(m)

Q̄(µ1) - Q̄(µ2) ⇒ J̄(µ1) ≤ J̄(µ2).

The optimal (minimal) value that J̄ attains on L̄(m) is

J∗ = T − τ(K + m), (3.2.8)

where the mapping τ is given in (3.2.7).

Proof. Let us commence with µ1, µ2 ∈ L̄(m) such that Q̄(µ1) - Q̄(µ2). Then, by definition,
Q̄t(µ1) ≤ Q̄t(µ2) for almost all t ∈ [0, T ], implying that for almost all t such that Q̄t(µ1) > K,
it must be that Q̄t(µ2) > K. Integrating over [0, T ], we obtain the inequality J̄(µ1) ≤ J̄(µ2).

By Proposition C.1.8, the infimum of the mapping J̄ on L̄(m) is attained at µ∗ = λ1[0,τ(m)].

Hence, it suffices to evaluate J̄(µ∗). For all t ≤ τ(m), the resulting queue length is identically
zero, and for t > τ(m), Q̄t(µ∗) = It(λ)−m. Thus

J̄(µ∗) = meas{t > τ(m) : It(λ)−m > K} = T − τ(K + m).

Finally, we state a criterion for optimality with respect to the performance measure J̄ for
the case in which the restriction on the cumulative service available has nontrivial consequences
on the possible penalty.
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Theorem 3.2.5. Assume that IT (λ) > K + m. Then for µ ∈ L̄(m), J̄(µ) = J∗ iff L̄T (µ) = 0
and It(µ) ≥ (It(λ)−K)+ for t < τ(K + m).

Proof. First note that for any admissible µ ∈ L̄(m), for all t > τ(K + m) we have

Q̄t(µ) ≥ X̄t(µ) = It(λ)− It(µ) > K + m−m = K. (3.2.9)

Thus, by the complementarity condition (ii) of Definition 1.2.1, we conclude that L̄ is “flat” on
the interval (τ(K + m), T ], and so L̄T (µ) = L̄τ(K+m)(µ).

Now, let µ ∈ L̄(m) be optimal for the performance measure J̄ . Contrary to the claim, let us
assume L̄T (µ) > 0. Then L̄τ(K+m)(µ) = L̄T (µ) > 0. So, already at τ(K + m) the queue length
strictly exceeds the threshold K, as is readily seen from

Q̄τ(K+m)(µ) = Iτ(K+m)(λ)− Iτ(K+m)(µ) + L̄τ(K+m)(µ) > K + m−m = K, (3.2.10)

where we have used the fact that Iτ(K+m)(µ) ≤ m, since µ ∈ L̄(m). Let to be the last point
before τ(K + m) at which there is no penalty, i.e.,

to := sup{s ≤ τ(K + m) : Q̄s(µ) ≤ K}. (3.2.11)

By (3.2.10) and the continuity of Q̄(µ), we have to < τ(K+m). This observation, when combined
with (3.2.9), implies that J̄(µ) ≥ T − to > J∗, which leads to a contradiction.

Let us now assume that for an optimal µ there exists an instant tp < τ(K + m) such that
Itp(µ) < (Itp(λ) −K)+. Then we necessarily have tp > τ(K) and (Itp(λ)−K)+ = Itp(λ) −K.

Hence, Q̄tp(µ) ≥ X̄tp(µ) = Itp(λ) − Itp(µ) > K. By the continuity of Q̄(µ), there is an interval
(tl, tr) containing tp such that Q̄t(µ) > K for all t ∈ (tl, tr). By the same reasoning as in (3.2.9),
we have

meas{t ∈ [τ(K + m), T ] : Q̄t(µ) > K} = T − τ(K + m).

Hence, J(µ) ≥ (T − τ(K +m))+ (tr− tl) > J∗. This, again, results in a contradiction. Together
with the last paragraph, this proves the “only if” part of the theorem.

As for the easier direction in the equivalence in the theorem, let µ ∈ L̄(m) satisfy LT (µ) = 0
and It(µ) ≥ (It(λ)−K)+ for t < τ(K + m). Then, for all t ∈ [0, τ(K + m)]

Q̄t(µ) = It(λ)− It(µ) ≤ It(λ)− (It(λ)−K)+ ≤ K.

By (3.2.9) again, J̄(µ) = T − τ(K + m) = J∗.
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3.2.2 Consequences in the Finite Buffer Setting

In this section, {X(n)(µ)} will continue to represent the sequence of netput processes defined in
(3.1.1) and {Q(n)(µ)} the sequence of queue length processes (depending on the service discipline
µ). Recall that in the finite buffer context they satisfy the relation Q(n)(µ) = ΓnK(X(n)(µ)).
Since this subsection deals entirely with the finite buffer case, this should not be confused with
the previous subsection where Q(n)(µ) is defined in (3.1.5). Proposition 1.2.4 and the convergence
result (3.2.1) allow us to conclude that

1
n

Q(n)(µ) → Q̄(µ) = ΓK(X̄(µ)), for every µ ∈ L1
+[0, T ],

where X̄(µ) is defined in (3.2.2). In the already familiar fashion, we write

Q̄(µ) = X̄(µ) + L̄(µ)− Ū(µ), (3.2.12)

where L̄(µ) and Ū(µ) are associated with X̄(µ) and K in the sense of Definition 1.2.2. The
fluid-limit version of the performance measures (3.1.4) is

J̄F (µ) = ŪT (µ), for µ ∈ L̄(m),

with L̄(m) defined in (3.2.6).
Next, we determine a (non-trivial) lower bound for this performance measure on the space

L̄(m). This choice of a lower bound is inspired by the results gained in the infinite-buffer
setting. More precisely, we concentrate on the service disciplines recognized as fluid-optimal in
the context of Theorem 3.2.5 to guess the lower bound in the following lemma.

Lemma 3.2.6. For all µ ∈ L̄(m), we have

J̄F (µ) ≥ (IT (λ)−K −m)+. (3.2.13)

Moreover, the minimum of the mapping J̄F over all µ ∈ L̄(m) is achieved by the policy µ∗ =
λ1[0,τ(m)].

Proof. Equation (3.2.12) and the fact that L̄(µ) is by definition nonnegative lead us to conclude
that

J̄F (µ) = ŪT (µ) ≥ IT (λ)− IT (µ)− Q̄T (µ).

Since µ ∈ L̄(m) and Q̄T (µ) ≤ K, the above inequality implies

J̄F (µ) = ŪT (µ) ≥ IT (λ)−m−K.

Since, by definition, J̄F is nonnegative, this completes the proof of (3.2.13).
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Now we verify that the lower bound in (3.2.13) is indeed attained at µ∗. Thanks to a well-
known identity connecting the upper and lower regulators in the two-sided reflection map (see,
e.g., equation (1.9) in [KLRS06] or Section 2.3 of [Har90]), we have

J̄F (µ∗) = UT (µ∗) = sup
s≤T

[X̄s(µ∗) + L̄s(µ∗)−K]+.

Since L̄(µ∗) ≡ 0 and I(µ∗) = I(λ) ∧m, the last equality implies

J̄F (µ∗) = sup
s≤T

[Is(λ)− Is(λ) ∧m−K]+ = sup
s≤T

[(Is(λ)−m)+ −K]+ = (IT (λ)−m−K)+.

The following analogue of Theorem 3.2.5 can be established using the same arguments as in
the proof of Theorem 3.2.5.

Theorem 3.2.7. Assume that IT (λ) > K +m. Then for µ ∈ L̄(m), J̄F (µ) = (IT (λ)−m−K)+

iff L̄T (µ) = 0 and It(µ) ≥ (It(λ)−K)+ for t < τ(K + m).

3.3 Second Order Approximation

In this section we still restrict our attention to deterministic service disciplines, i.e., if it is not
explicitly noted otherwise, whenever we refer to a service discipline we will have a deterministic
one in mind.

3.3.1 Some Important Processes

We start by recalling Definition 3.2.1, and proceed to define for any service discipline µ ∈ L1
+[0, T ]

the deterministic processes

X̄(µ) = x(0,λ, µ) and Q̄(µ) = q(0,λ, µ), (3.3.1)

for a fixed λ ∈ L1
+[0, T ]. We continue to interpret λ as a known, deterministic arrival rate and

consider it fixed for the rest of this section.
For any µ, the process X̄(µ) introduced in (3.3.1) induces a set-valued process Φ−X̄(µ) defined

by

Φ−X̄(µ)(t) = {s ≤ t : −X̄s(µ) = sup
u≤t

[−X̄u(µ)]} for all t ∈ [0, T ]. (3.3.2)

For some useful facts about Φ−X̄(µ), the reader is directed to Section 9.3 in [Whi02a].
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Throughout the rest of this section W will stand for a standard Brownian motion on the
(possibly enlarged) probability space (Ω,F , P). For any µ ∈ L1

+[0, T ], using (3.3.2), we define
the random process

Q̂(µ) = W (I(λ + µ)) + sup
s∈Φ−X̄(µ)(·)

[−W (Is(λ + µ))]. (3.3.3)

This process arises in the second-order approximation (for more details, see Theorem 1.2.7 and
Subsection 2.2.2).

3.3.2 A Sequence of Control Problems

We now consider a sequence of performance measures defined by the mappings Ĵ (n) : L1
+[0, T ] →

L0
+(Ω,F , P), which are given by

Ĵ (n)(µ) = meas
{

t ∈ [0, T ] : Q̄t(µ) +
1√
n

Q̂t(µ) > K

}
, (3.3.4)

with Q̄(µ) and Q̂(µ) as above. As was discussed in Subsection 2.2.2, the processes

Q̄t(µ) +
1√
n

Q̂t(µ)

featured in the definition of the sequence of mappings {Ĵ (n)} above provide a second-order
approximation for the sequence { 1

nQ(n)(µ)}. We are not interested in minimizing the value of
Ĵ (n) for any fixed index n. What we wish to explore is the asymptotic behavior of the sequence
of performance measures as n →∞. Hence, it is sensible to have the following definition.

Definition 3.3.1. A sequence {µ∗
n} in L̄(m) is called second order optimal for the sequence of

performance measures {Ĵ (n)} if

lim inf
n→∞

E[Ĵ (n)(µn)− Ĵ (n)(µ∗
n)] ≥ 0

for any other sequence {µn} of deterministic admissible service disciplines.

The following lemma contains a more operational criterion for determining second order
optimality.

Lemma 3.3.2. Let Ĵ∗ be a constant such that for all sequences {µn} in L̄(m) we have

lim inf
n→∞

E[Ĵ (n)(µn)− Ĵ∗] ≥ 0,

and suppose that {µ∗
n} is a sequence in L̄(m), such that

lim
n→∞

E[Ĵ (n)(µ∗
n)] = Ĵ∗. (3.3.5)

Then {µ∗
n} is second order optimal for the sequence {Ĵ (n)}.
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Proof. Let Ĵ∗ and {µ∗
n} satisfy the assumptions of the lemma. Then for all deterministic ad-

missible sequences {µn},

lim inf
n→∞

E[Ĵ (n)(µn)− Ĵ (n)(µ∗
n)] ≥ lim inf

n→∞
E[Ĵ (n)(µn)− Ĵ∗] + lim inf

n→∞
E[Ĵ∗ − Ĵ (n)(µ∗

n)]

≥ lim
n→∞

E[Ĵ∗ − Ĵ (n)(µ∗
n)] = 0.

The previous lemma allows us to couple the direct search for the sequence {µ∗
n} with the

search for a suitable asymptotic lower bound Ĵ∗. At first sight, the benefits of this intermediate
step can easily be challenged. Clearly, the success of the procedure relies heavily on a clever
choice of Ĵ∗. However, we come to this apparent obstacle armed with the intuition gained in the
fluid-limit analysis. This connection is what makes the two-step procedure more natural. The
details of how Ĵ∗ is determined are presented in Appendix C.3.

Proposition 3.3.3. Let the constant Ĵ∗ be defined as

Ĵ∗ =
1
2
(τ(K + m)− τ((K + m)−)) + T − τ(K + m). (3.3.6)

Then for all deterministic admissible sequences {µn},

lim inf
n→∞

E[Ĵ (n)(µn)− Ĵ∗] ≥ 0.

Proof. This is a direct consequence of Lemma C.3.2 and Corollary C.3.4.

The first part of the criterion from Lemma 3.3.2 is, thus, satisfied by Ĵ∗ in (3.3.6). What
remains to be done, in order to fully apply Lemma 3.3.2, is to propose a particular admissible
sequence of service disciplines whose limiting penalty will match that of Ĵ∗, as specified in
(3.3.5). The next subsection is dedicated to this task.

3.3.3 A Second Order Optimal Class

Assumption 3.3.4. Let {ηn} be a sequence in (0, 1) satisfying

n(1− ηn)2 −→∞, as n →∞.

Furthermore, let {µ̂n} be a sequence of integrable nonnegative functions on [0, T ], defined as

µ̂n = λ1[τ(ηnK),τ(ηnK+m)]. (3.3.7)

In words, the service discipline µ̂n “does nothing” until the cumulative arrival rate reaches the
level ηnK, at which moment it starts matching the arrival rate, and does so until it “runs out
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of fuel”. The cumulative service disciplines can be written as It(µ̂n) = (It(λ) − ηnK)+ ∧m. It
is easily seen that {µ̂n} is a sequence of admissible disciplines.

For any n, the process Q̄(µ̂n) defined in (3.2.4) has the form

Q̄t(µ̂n) =






It(λ) for 0 ≤ t ≤ τ(ηnK),

ηnK for τ(ηnK) ≤ t ≤ τ(ηnK + m),

It(λ)−m for τ(ηnK + m) ≤ t ≤ T.

(3.3.8)

This observation has the following simple consequence.

Lemma 3.3.5. For every n, the service discipline µ̂n is fluid-optimal. Equivalently,

J̄(µ̂n) = T − τ(K + m) for every n.

Another helpful feature of the sequence {µ̂n} is the simplification of the form of the processes
Φ−X̄(µ̂n) defined in (3.3.2), under a mild assumption that λ > 0 on some neighborhood of zero.
In fact, for every n we simply get

Φ−X̄(µ̂n)(t) = {s ≤ t : −X̄s(µ̂n) = sup
u≤t

[−X̄u(µ̂n)] = 0} = {0}, for every t.

This fact enables us to display the stochastic processes Q̂(µ̂n) introduced in (3.3.3) as

Q̂(µ̂n) = W (I(λ + µ̂n)). (3.3.9)

In words, the processes Q̂(µ̂n) become merely Brownian motions with different time-changes.

Theorem 3.3.6. The sequence {µ̂n} is second order optimal for the sequence of performance
measures {Ĵ (n)}.

Proof. We simply put together the criterion of Lemma 3.3.2 with the properties established in
Propositions 3.3.3 and C.3.5.

Remark 3.3.1. Although it provides a reasonably large class of second order optimal sequences,
Theorem 3.3.6 unfortunately does not give a criterion for second order optimality.

Example 3.3.7. A trivial example of a suitable sequence {ηn} is obtained by setting ηn ≡ η

for some constant η ∈ (0, 1).
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3.4 The Pre-limit Sequence

3.4.1 The Infinite Buffer Setting

We return to the original problem announced in Subsection 3.1.5. Let us repeat the definition
of the sequence of performance measures defined in (3.1.6). For all n ∈ N, the mapping J (n) :
L(n)(m) → L0

+(Ω,F , P) is given by

J (n)(µ) =
T∫

0

1{ 1
nQ(n)

t (µ)>K} dt for µ ∈ L(n)(m). (3.4.1)

Our objective is to asymptotically minimize the values of {J (n)} along admissible sequences of
service disciplines.

Definition 3.4.1. A sequence {µn} is called an admissible sequence if µn ∈ L(n)(m) for all
n ∈ N.

The following definition captures the notion of asymptotic optimality in this context.

Definition 3.4.2. An admissible sequence {µ∗
n} is called asymptotically optimal for the sequence

of performance measures {J (n)}, if

lim inf
n→∞

[J (n)(µn)− J (n)(µ∗
n)] ≥ 0, a.s.

for any other admissible sequence {µn}.

We have the following criterion for asymptotic optimality.

Lemma 3.4.3. Let {J∗
n} be a sequence of random variables such that for all admissible sequences

{µn},

lim inf
n→∞

[J (n)(µn)− J∗
n] ≥ 0, a.s.

and let {µ∗
n} be an admissible sequence such that

lim
n→∞

[J (n)(µ∗
n)− J∗

n] = 0, a.s. (3.4.2)

Then, {µ∗
n} is asymptotically optimal for {J (n)}.

Proof. Let {J∗
n} and {µ∗

n} satisfy the assumptions of the lemma. Then, for all admissible
sequences {µn}, we have

lim inf
n→∞

[J (n)(µn)− J (n)(µ∗
n)] ≥ lim inf

n→∞
[J (n)(µn)− J∗

n] + lim inf
n→∞

[J∗
n − J (n)(µ∗

n)]

≥ lim
n→∞

[J∗
n − J (n)(µ∗

n)] = 0,

with all the inequalities above holding almost surely.
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The next lemma is dedicated to establishing the sequence of asymptotic lower bounds for
the sequence of performance measures {J (n)}. First, we introduce the sequence {τ (n), n ∈ N} of
(right-continuous) inverse processes of the normalized exogenous arrival processes 1

nN+(nIt(λ)),
i.e., for every l ∈ R+, the action of the random mapping τ (n) on l is defined as

τ (n)(l) = inf
{

t ≥ 0 :
1
n

N+(nIt(λ)) > l

}
∧ T. (3.4.3)

Lemma 3.4.4. Let {µn} be an admissible sequence. Consider the sequence of random variables
{J∗

n} defined by

J∗
n = T − τ

(n)
∗ , (3.4.4)

where

τ (n)
∗ = τ (n)

(
K +

1
n

N−(nm)
)

with τ (n) defined as in (3.4.3). Then, for all n ∈ N,

J (n) ≥ J∗
n, a.s.

Proof. Let the admissible sequence {µn} be given and let us temporarily fix an index n. It
suffices to show that 1

nQ(n)
t > K for every t > τ (n)

∗ . Since the Poisson process is nondecreasing
and µn ∈ L(n)(m), we have that for every t ∈ [0, T ],

N−(nIt(µn)) ≤ N−(mn).

By the same reasoning, for every t > τ (n)
∗ ,

1
n

N+(nIt(λ)) >
1
n

N+(nI
τ (n)
∗

(λ)) > K +
1
n

N−(nm),

where the equality follows from the definition of the mapping τ (n). Putting it all together, for
all t > τ (n)

∗ , we see that

1
n

Q(n)
t ≥ 1

n
X(n)

t > K +
1
n

N−(nm)− 1
n

N−(nm) = K.

The next goal is to find an admissible sequence that is asymptotically optimal. It is enough to
construct an admissible sequence {µ∗

n} which satisfies the criterion (3.4.2) with random variables
{J∗

n} provided in (3.4.4).

Assumption 3.4.5. Let {γn} be a sequence in (0, 1), that satisfies
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(i)
∞∑

n=1

1
n2γ4

n
< ∞,

(ii)
∞∑

n=1

1
n2(1−γn)4 < ∞.

We now define the sequence {µ̃n} of admissible service policies. For all n, we set

µ̃n(t) =






0 for t ≤ τ(γnK),

λt for τ(γnK) < t ≤ τ(γnK + m),

0 for τ(γnK + m) < t ≤ T.

(3.4.5)

This sequence of service policies generates the following sequence of netput processes

X(n)
t (µ̃n) =






N+(nIt(λ)) t ∈ [0, τ(γnK)],

N+(nIt(λ)) −N−(n(It(λ)− γnK)) t ∈ (τ(γnK), τ(γnK + m)],

N+(nIt(λ)) −N−(nm) t ∈ (τ(γnK + m), T ].

The corresponding queue length processes are given by Q(n)(µ̃n) = Γ(X(n)(µ̃n)). Our objective
is to verify condition (3.4.2) for the admissible sequence {µ̃n}.

Further analysis is simplified by Assumption 3.4.5(i). Its role is to cause an almost sure
absence of regulation in the limit, as can be seen in the following proposition which follows from
Corollary C.4.4.

Proposition 3.4.6. Let the sequence {γn} satisfy Assumption 3.4.5(i). Then, Q(n)
t (µ̃n) =

X(n)
t (µ̃n) for all t ∈ [τ(γnK), τ(γnK + m)], for all but finitely many n, almost surely.

We have resolved that Assumption 3.4.5(i) is indeed a sufficient condition for eventual absence
of reflection on the segment [τ(γnK), τ(γnK+m)]. Next, we verify that the complete Assumption
3.4.5 is a sufficient condition for the sequence {γn} to induce an asymptotically optimal {µ̃n}.

Proposition 3.4.7. Let the sequence {γn} satisfy Assumption 3.4.5. Then

P
[
sup

t

1
n

Q
(n)
t (µ̃n) ≤ K, ev.

]
= 1,

with the supremum in the previous display taken over all t ∈ [τ(γnK), τ(γnK + m)].

Proof. Proposition C.4.7 implies

∞∑

n=1

P
[
inf
t

1
n

Q(n)
t (µ̃n) > K

]
≤ C

[ ∞∑

n=1

1
n2(1− γn)4

+
∞∑

n=1

1
n2γ4

n

]

< ∞,

and the announced claim is a simple consequence of the Borel-Cantelli Lemma.
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Remark 3.4.1. It is of obvious interest to show that the assumptions imposed on {γn} are not
void. To produce a trivial example, we can set γn = 1

2 for all n.
For an example of {γn} converging to 1, let γn = 1− 1

2n−1/5 for all n ∈ N. Then
∞∑

n=1

1
n2γ4

n
= 16

∞∑

n=1

1
n2n−4/5(2n1/5 − 1)4

= 16
∞∑

n=1

1
n6/5(2n1/5 − 1)4

≤ 16
∞∑

n=1

1
n6/5

< ∞

and
∞∑

n=1

1
n2(1− γn)4

= 16
∞∑

n=1

1
n2n−4/5

= 16
∞∑

n=1

1
n6/5

< ∞.

Hence, Assumption 3.4.5 is satisfied by the proposed sequence.

Theorem 3.4.8. Let the sequence {γn} satisfy Assumption 3.4.5. Then we have almost surely,
for almost every n,

J (n)(µ̃n) = T − τ
(n)
∗ .

In other words, the sequence of service policies {µ̃n} is asymptotically optimal for {J (n)}.

Proof. We use Lemma C.4.1 to rule out any contribution to the cost before time τ(γnK) and
Proposition 3.4.7 to eliminate cost aggregated over the interval [τ(γnK), τ(γnK + m)], both for
sufficiently large n. The result is the equality

J (n)(µ̃n) =
∫ T

τ(γnK+m)
1{ 1

nQ
(n)
t (µ̃n)>K} dt, a.s., (3.4.6)

which holds for sufficiently large n. In view of Corollary C.4.4, we rewrite (3.4.6) as

J (n)(µ̃n) =
∫ T

τ(γnK+m)
1{ 1

n (N+(nIt(λ))−N−(nm))>K} dt

=
(
T − τ(γnK + m) ∨ τ (n)

∗

)+
≤
(
T − τ (n)

∗

)+
.

We recognize the right-hand side as the lower bound for the mapping J (n) obtained in Lemma
3.4.4, which completes the proof.

In general, we cannot make any claims on the almost sure limit of the sequence of minimal
penalties from the previous theorem. However, under slight additional assumptions stated below,
the sequence {J (n)(µ̃n)} does have a limit, and that limit equals the optimal penalty in the fluid
case J∗, defined in (3.2.8). The appropriate additional assumption is that the cumulative arrival
rate I(λ) is strictly increasing in the neighborhood of τ(K + m). The precise claims and their
proofs are exhibited Appendix C.4. Appendix C.5 contains a comparison between the optimal
classes we obtained in the previous three sections.
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3.4.2 Consequences in the Finite Buffer Setting

In this subsection, Q(n), L(n) and U (n) are defined as in Subsections 3.1.2 and 4.3.1
As in the discussion of the fluid regime, our strategy consists of two steps - finding an

(asymptotic) lower bound on the performance measures and then proving that a particular class
of controls attains that lower bound.

Lemma 3.4.9. For every n, and for every µ ∈ L(n)(m), we have

J (n)
F (µ) ≥

[ 1
n

N+(nIT (λ))− 1
n

N−(nm)−K
]+

, a.s.,

where J (n)
F : L(n)(m) → L0

+(Ω,F , P) is defined in (3.1.4).

Proof. Let us temporarily fix an index n and a service discipline µ ∈ L(n)(m). Using expression
(3.1.3) and the facts that L(n)(µ) ≥ 0 and Q(n)(µ) ≤ nK, we get

J
(n)
F (µ) =

1
n

U
(n)
T (µ) ≥ 1

n
N+(nIT (λ)) − 1

n
N−(nIT (µ)) −K. (3.4.7)

Since µ ∈ L(n)(m), we have that IT (µ) ≤ m,a.s. This bound, combined with the monotonicity
of the Poisson process N− and inequality (3.4.7), implies that

J (n)
F (µ) =

1
n

U (n)
T (µ) ≥ 1

n
N+(nIT (λ)) − 1

n
N−(nm)−K.

The fact that U (n)
T ≥ 0 by definition wraps up the proof.

The following theorem is the main result of this section.

Theorem 3.4.10. Let the sequence {γn} satisfy Assumption 3.4.5 and let {µ̃n} be the corre-
sponding sequence of polices, as defined in (3.4.5). Then we have almost surely, for all but
finitely many n

J
(n)
F (µ̃n) =

[
1
n

N+(nIT (λ))− 1
n

N−(nm)−K

]+
,

i.e., the sequence of service policies {µ̃n} is asymptotically optimal for {J (n)
F }.

Proof. We start by expressing for every n the length of the queue, using Theorem 1.4 of
[KLRS06]. For every t ∈ [0, T ], we have

Q(n)
t (µ̃n) = Γ(X(n)(µ̃n))t − sup

0≤s≤t

[(
Γ(X(n)(µ̃n))s −K

)+
∧ inf

s≤u≤t
Γ(X(n)(µ̃n))u

]
. (3.4.8)

Lemma C.4.1 and Propositions C.4.3 and 3.4.7 allow us to conclude that

Γ(X(n)(µ̃n))t ∈ [0,K], for all t ≤ τ (n)
∗ ,
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almost surely, for all but finitely many n. Hence, evaluated at any instant t preceding τ (n)
∗ the

equation (3.4.8) has the form

Q(n)
t (µ̃n) = Γ(X(n)(µ̃n))t − sup

0≤s≤t

[
0 ∧ inf

s≤u≤t
Γ(X(n)(µ̃n))u

]
= Γ(X(n)(µ̃n))t. (3.4.9)

We conclude that L(n)

τ
(n)
∗

(µ̃n) = U (n)

τ
(n)
∗

(µ̃n) = 0, almost surely, for all but finitely many n. Moreover,

since there is no remaining service on (τ (n)
∗ , T ], it must be that L(n)

T (µ̃n) = 0, almost surely, for
all but finitely many n.

Returning again to (3.4.8) we express the total amount of regulation on [0, T ] as

U (n)
T (µ̃n) = sup

τ (n)
∗ ≤s≤T

[
(Γ(X(n)(µ̃n))s −K)+ ∧ inf

s≤u≤t
Γ(X(n)(µ̃n))u

]
.

Using Proposition C.4.3 this translates into

U (n)
T (µ̃n) = sup

τ
(n)
∗ ≤s≤T

[
(X(n)

s (µ̃n)−K)+ ∧ inf
s≤u≤t

X(n)
u (µ̃n)

]
.

As there is no service in the region across which the supremum is taken in the expression above,
the netput process is nondecreasing and we get

U (n)
T (µ̃n) = sup

τ
(n)
∗ ≤s≤T

[
(X(n)

s (µ̃n)−K)+ ∧X(n)
s (µ̃n)

]
= sup

τ
(n)
∗ ≤s≤T

(X(n)
s (µ̃n)−K)+.

Again, since the netput process is nondecreasing, we obtain

U (n)
T (µ̃n) = (X(n)

T (µ̃n)−K)+ = (N+(nIT (λ))−N−(nm)−K)+. (3.4.10)

Dividing the equality in (3.4.10) throughout by n completes the proof.



Chapter 4

The Tandem Network

4.1 The Control Problem - Finite Buffers

We next focus on the two-station tandem queueing network, with each station having a single
server and a finite buffer capacity. The modeling assumption is that the process of exogenous
arrivals into the first station, as well as the processes of potential departures are nonhomogeneous
Poisson. We implement these assumptions as follows:

Let N+
1 , N−

1 and N−
2 be independent unit Poisson processes. Moreover, the time-varying

rates are

• λ ∈ L1
+[0, T ] - the known, deterministic exogenous arrival rate;

• µ - the service rate at the first station, which we are at liberty to choose among all non-
anticipating µ such that IT (µ) ≤ m. Appendix B.3 contains the formal definition of the
space of all non-anticipating service disciplines. In the present section, we refer to the set
of all such service disciplines satisfying the constraint IT (µ) ≤ m as admissible. Obviously,
all deterministic service disciplines µ satisfying IT (µ) ≤ m are admissible.

• µ2 ∈ L1
+[0, T ] - the service rate at the second station, assumed to be deterministic and

known.

The capacities of the two finite buffers are denoted by K1,K2 ∈ R+ ∪ {∞}. We permit the
buffer capacities to assume the value of ∞ in order to allow the extremal infinite buffer case for
any or both of the stations.

Next, we formally describe the dynamics of the system. As all the other values are given, we
will denote all the derived processes as functions depending on the admissible control µ. The
netput process in the first station per the above assumptions is

X(1)(µ) = N+
1 (I(λ))−N−

1 (I(µ)).

52
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The defining equations of the two-sided reflection mapping ΓK1 (see Definition 1.2.2) applied
to the process X(1)(µ) yield the queue length

Q(1)(µ) = X(1)(µ) + L(1)(µ)− U (1)(µ), (4.1.1)

where L(1)(µ) and U (1)(µ) are the regulator maps associated with X(1)(µ) and K1 in the sense
of Definition 1.2.2.

The departure process from the first station is then

N+
1 (I(λ))−Q(1)(µ)− U (1)(µ) = N−

1 (I(µ))− L(1)(µ). (4.1.2)

As the process in (4.1.2) is also the arrival process into the second station, the netput process
for the second station reads as

X(2)(µ) = N−
1 (I(µ))− L(1)(µ)−N−

2 (I(µ2)),

and the queue length is

Q(2)(µ) = X(2)(µ) + L(2)(µ)− U (2)(µ), (4.1.3)

with the regulator processes L(2)(µ) and U (2)(µ) associated with X(2)(µ) and K2 as in Definition
1.2.2.

Due to the finiteness of the two buffers in the system, a certain number of customers may
be lost - potentially causing a cost to the manager of the system. The number of customers lost
during the interval [0, T ], based on expressions (4.1.1) and (4.1.3), is

U
(1)
T (µ) + U

(2)
T (µ)

for any admissible service discipline µ. We want to find a way to minimize this cost by varying
the service discipline µ.

4.2 The Uniform Acceleration Scheme

As is expected, we do not look at the original control problem per se. Instead, we consider a
sequence of systems with the same network topology as the original system, but with uniformly
accelerated rates. We use the same symbols for the buffer sizes and the basic rates of Poisson
processes appearing in the sequence of systems as we did in the original model encapsulated in
(4.1.1) and (4.1.3).

To any fixed index n, there corresponds a different space L(n)(m) of admissible service
disciplines. The construction of these spaces is described in Appendix B.3. A precise description
of the model for the sequence of tandems is next.
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For every n, we list relevant stochastic processes expressed as functions of admissible service
disciplines µ ∈ L(n)(m). The dynamics in the first station is described by the netput process

X(1,n)(µ) = N+
1 (nI(λ))−N−

1 (nI(µ)),

which, upon the application of the two-sided reflection map constraining the queue to the strip
[0, nK1] in accordance with the scaled buffer capacity nK1, gives rise to the queue length process

Q(1,n)(µ) = X(1,n)(µ) + L(1,n)(µ)− U (1,n)(µ), (4.2.1)

with L(1,n)(µ) and U (1,n)(µ) being the regulator maps associated with X(1,n)(µ) and nK1 in the
sense of Definition 1.2.2.

The netput process in the second station is

X(2,n)(µ) = N−
1 (nI(µ))− L(1,n)(µ)−N−

2 (nI(µ2)),

and the queue length is

Q(2,n)(µ) = X(2,n)(µ) + L(2,n)(µ)− U (2,n)(µ). (4.2.2)

The regulator maps L(2,n)(µ) and U (2,n)(µ) are chosen in the sense of Definition 1.2.2 to corre-
spond to the two-sided reflection map on [0, nK2] applied to the process X(2,n)(µ).

For every n, the mapping J (n)
F : L(n)(m) → L0

+(Ω,F , P), defined by

J
(n)
F (µ) =

1
n

(
U

(1,n)
T (µ) + U

(2,n)
T (µ)

)
for every µ, (4.2.3)

measures the performance of the system in terms of the normalized number of lost jobs in both
stations during [0, T ].

4.3 The Auxiliary Problem - Infinite Buffers

We move on to the tandem system in which the buffers in both stations are infinite, so that the
only restriction imposed on the queue length processes is the nonnegativity requirement. The
queue length processes are

Q(1, n)(µ) = N+
1 (nI(λ))−N−

1 (nI(µ)) + L(1, n)(µ),

Q(2, n)(µ) = N−
1 (nI(µ)) − L(1, n)(µ)−N−

2 (nI(µ2)) + L(2, n)(µ),
(4.3.1)

where the processes L(1, n)(µ) and L(2, n)(µ) are the regulating terms arising in Definition 1.2.1
of the one-dimensional reflection map. Comparing (4.3.1) to (4.2.1) and (4.1.3), we see that in
the extreme case of K1 = K2 = ∞, the expressions for the queue lengths coincide, as is to be
expected.
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Similarly to the notation in the single station case, {τ (1, n), n ∈ N} represent the (right-
continuous) inverse processes of the normalized exogenous arrival processes 1

nN+
1 (nIt(λ)), i.e.,

τ (1, n)(l) = inf
{

t ≥ 0 :
1
n

N+
1 (nIt(λ)) > l

}
∧ T, for all l ∈ R+.

4.3.1 The Performance Measure

Let the two positive constants K1 and K2 now denote the thresholds in the two queues in the
system. For every n ∈ N, we define the performance measure J (n) : L(n)(m) −→ L0

+(Ω,F , P) by

J (n)(µ) =
∫ T

0

[
1{ 1

n Q(1, n)
t (µ)>K1}

+ 1{ 1
nQ(2, n)

t (µ)>K2}

]
dt, for µ ∈ L(n)(m). (4.3.2)

Occasionally it will be more convenient to use the following equivalent formulation of J (n)

J (n)(µ) = meas

{
1
n

Q(1, n)
t (µ) > K1

}
+ meas

{
1
n

Q(2, n)
t (µ) > K2

}
(4.3.3)

for µ ∈ L(n)(m).
We are interested in minimizing the values of the above performance measures across all

sequences of admissible controls in a suitable (asymptotic) manner to be described later on (see
Definition 4.6.1).
Remark 4.3.1. We choose to think about the cost structure of (4.3.2) in terms of a unit penalty
that is accumulated over the period [0, T ] whenever a queue exceeds the buffer level. If both
queues are above their thresholds simultaneously, then the penalties are added up. From now
on we will occasionally refer to the integrand in (4.3.2) or - depending on the context - the
performance measure itself as the penalty.
Remark 4.3.2. The similarities between this auxiliary infinite-buffer problem and the main con-
trol problem proposed in the previous section are not hard to see. A natural principle that we
expect to arise in solving both problems is to try to restrict the queue lengths so that whenever
possible

(a) they are below or at the threshold level in the infinite buffer case;

(b) the downward pushing is avoided in the finite buffer case.

However, it turns out that the controls that perform well in one case are not guaranteed to
perform well in the other setting - the situation is more complicated than that.

We intend to solve the control problem for the infinite buffer case - first in the context of the
fluid-limit problem in the following section. We then proceed to solve the fluid-limit problem
associated with the finite-buffer case through simple analogy with the infinite-buffer case. This
approach does not extend to our central problem of asymptotic optimality covered in Sections
4.6 and 4.8, but the fluid-limit optimal classes are already informative enough to facilitate the
solutions of both the finite-buffer and the infinite-buffer asymptotic control problems.
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4.4 Fluid Limit Analysis in the Infinite-Buffer Case

Given a fixed deterministic service discipline µ, by (4.3.1), Theorem 1.2.5 and the continuity of
the one-sided regulator map in the uniform topology (see Theorem 13.5.1 in [Whi02b]), we have

1
n

Q(1, n)(µ) → Q̄(1)(µ) := I(λ)− I(µ) + L̄(1)(µ),

1
n

Q(2, n)(µ) → Q̄(2)(µ) := I(µ)− L̄(1)(µ)− I(µ2) + L̄(2)(µ),
(4.4.1)

almost surely, in the uniform topology, where

L̄(1)(µ) = sup
s≤·

[−Is(λ− µ)],

L̄(2)(µ) = sup
s≤·

[−Is(µ) + L̄(1)
s (µ) + Is(µ2)]

are the regulator maps corresponding to I(λ)− I(µ) and I(µ)− I(µ2)− L̄(1)(µ), respectively,
for the one-sided reflection map Γ of Definition 1.2.1.

4.4.1 Performance Measure

In order to define the performance measure analogous to the ones introduced in Subsection 4.3.1,
we first need to introduce the set of admissible service disciplines. The service disciplines we
allow in the context of the fluid limit are deterministic and their integrals must not exceed the
given bound m. Again, we denote the set of admissible service disciplines by

L̄(m) = {µ ∈ L1
+[0, T ] : IT (µ) ≤ m}.

The fluid-limit variant of the performance measures from (4.3.2) is defined as J̄ : L̄(m) → R+,
with

J̄(µ) = meas{t ∈ [0, T ] : Q̄(1)
t (µ) > K1} + meas{t ∈ [0, T ] : Q̄(2)

t (µ) > K2}, for every µ ∈ L̄(m).

Our goal is to identify service disciplines that minimize J̄ , provided that such service disciplines
exist. We then have the larger goals of relating the fluid limit problem with the performance
measures J (n) of (4.3.2) to the finite-buffer problem. We will first determine a lower bound on
J̄ , and follow with a criterion identifying the service disciplines achieving that lower bound.

4.4.2 The Lower Bound

A convenient yardstick for the performance of the system just described is the performance of
the corresponding “pooled” queue, which is obtained by omitting the first station in the tandem
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system. Since the rate of exogenous arrivals λ and the rate of service in the second station µ2

are given, the queue length Q̄P in this “pooled” system reads as

Q̄P = X̄P + L̄P , (4.4.2)

with X̄P = I(λ − µ2) and L̄P = sups≤·[−Is(λ − µ2)]. Note that Q̄P does not depend on the
service discipline at the first station.

Lemma 4.4.1. For every µ ∈ L̄(m) and every t ∈ [0, T ], we have that L̄(2)
t (µ) ≥ L̄P

t and

Q̄(1)
t (µ) + Q̄(2)

t (µ) ≥ Q̄P
t . (4.4.3)

Proof. Using (4.4.1) for every µ and t, the left-hand side of (4.4.3) can be rewritten as

Q̄(1)
t (µ) + Q̄(2)

t (µ) = It(λ)− It(µ) + L̄(1)
t (µ) + It(µ)− L̄(1)

t (µ)− It(µ2) + L̄(2)
t (µ)

= It(λ− µ2) + L̄(2)
t (µ)

= X̄P
t + L̄(2)

t (µ).

Therefore, it suffices to prove L̄(2)
t (µ) ≥ L̄P

t . By definition,

L̄(2)
t (µ) = sup

s≤t
[−Is(µ) + L̄(1)

s (µ) + Is(µ2)] = sup
s≤t

[Q̄(1)
s − Is(λ) + Is(µ2)].

Since the queue length Q̄(1) is nonnegative,

L̄(2)
t (µ) ≥ sup

s≤t
[−Is(λ) + Is(µ2)] = L̄P

t . (4.4.4)

Now that we know that the length of the pooled queue is a lower bound for the sum of
the lengths of the two queues in tandem, we can get a lower bound on the aggregated penalty
up to any time t ∈ [0, T ]. Further exposition will be facilitated by introducing the mappings
J̄ : [0, T ]× L̄(m) → R+ and J̄P : [0, T ] → R+ as follows

J̄(t, µ) = meas {s ∈ [0, t] : Q̄(1)
s (µ) > K1} + meas {s ∈ [0, t] : Q̄(2)

s (µ) > K2},
J̄P (t) = meas {s ∈ [0, t] : Q̄P

s > K1 + K2}.
(4.4.5)

In particular, we have that J̄(T, µ) = J̄(µ).

Lemma 4.4.2. For every admissible service discipline µ and every t ∈ [0, T ], we have

J̄(t, µ) ≥ J̄P (t).
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Proof. Let us temporarily fix a service discipline µ and a time t. For all s ≤ t such that
Q̄P

s > K1 + K2, by Lemma 4.4.1 we have that Q̄(1)
s (µ) + Q̄(2)

s (µ) > K1 + K2. Hence, at least
one of the inequalities Q̄(1)

s (µ) > K1 and Q̄(2)
s (µ) > K2 must hold true, which completes the

proof.

The previous lemma directs our further investigation as follows. Let us imagine a myopic
observer who does not see the tandem system in its entirety - he/she only sees the arrival stream
into the first station and the departures from the second station. We aim at finding these service
disciplines in the first station that have the property that the said observer would not be able
to tell whether he/she is looking at the pooled queue or at a tandem system with a hidden
first station. This is feasible only “locally”, i.e., until the constraint on the amount of service
available is reached, which prevents communication between the two stations, and hence, further
emulation of the pooled queue by the tandem system. If this is achieved, then the lower bound
generated by the pooled queue from the last lemma is matched and we have an optimal control.
Thus, we need a different lower bound on the penalty accumulated from the time when even if
all the available service is utilized, the first queue must cross over the threshold. Let us recall
that τ : R+ → [0, T ] is the (right-continuous) inverse mapping of I(λ) : [0, T ] → R+ as defined
in (3.2.7).

Lemma 4.4.3. For all µ ∈ L̄(m),

J̄(T, µ)− J̄(τ(K1 + m), µ) = J̄(µ)− J̄(τ(K1 + m), µ) ≥ T − τ(K1 + m).

Proof. By the definition of τ , for every µ ∈ L̄(m) we have

Q̄(1)
t (µ) ≥ It(λ− µ) ≥ It(λ)−m > K1, for every t > τ(K1 + m). (4.4.6)

From the definition in (4.4.5),

J̄(µ)− J̄(τ(K1 + m), µ) ≥ meas {t ∈ [τ(K1 + m), T ] : Q̄(1)
t (µ) > K1}

= T − τ(K1 + m).
(4.4.7)

Combining Lemmas 4.4.2 and 4.4.3, we get the following lower bound on the performance
measure J̄ .

Corollary 4.4.4. For all admissible service disciplines µ, we have

J̄(µ) ≥ J̄P (τ(K1 + m)) + T − τ(K1 + m).
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4.4.3 A Class of Fluid-Optimal Disciplines

For the sake of completeness, let us state the formal definition of a fluid-optimal discipline.

Definition 4.4.5. We say that a service discipline µ∗ ∈ L̄(m) is fluid optimal for the performance
measure J̄ if J̄(µ) ≥ J̄(µ∗) for all µ ∈ L̄(m).

Let us denote by L̄∗(m) the subset of L̄(m) containing all service disciplines µ satisfying the
following conditions:

L̄∗(m) : 1. L̄(1)
T (µ) = 0 or, equivalently, It(λ) ≥ It(µ), for all t.

L̄∗(m) : 2. For all t ≤ τ(K1 + m),

Q̄P
t ≤ K1 + K2 ⇒ It(λ)−K1 ≤ It(µ) ≤ K2 + It(µ2)− L̄P

t . (4.4.8)

L̄∗(m) : 3. For all t, It(λ)−K1 ≤ It(µ) or It(µ) ≤ K2 + It(µ2)− L̄P
t .

In words, the assumptions above mean that (L̄∗
m : 1) there is never reflection off zero in the first

queue, (L̄∗
m : 2) whenever the pooled queue is below its threshold K1 + K2, both queues in the

tandem must also be below their thresholds and (L̄∗
m : 3) at no time can both queues in the

tandem be above their thresholds. We claim the following.

Proposition 4.4.6. All µ ∈ L̄∗(m) are fluid-optimal.

Proof. Let µ be a service discipline in L̄∗(m). By condition (L̄∗(m) : 3), for every t we have

J̄(t, µ) = meas {s ∈ [0, t] : Q̄(1)
s (µ) > K1 or Q̄(2)

s (µ) > K2}.

Using the remaining defining conditions on L̄∗(m), the penalty accumulated up to time τ(K1+m)
can be further rewritten as

J̄(τ(K1 + m), µ) = meas {s ∈ [0, τ(K1 + m)] : Q̄(1)
s (µ) > K1 or Q̄(2)

s (µ) > K2}
= J̄P (τ(K1 + m)),

where the first equality follows from (L̄∗
m : 3) and the second equality results from (L̄∗

m : 2). On
the other hand, for every t > τ(K1 + m), we necessarily have Q̄(1)

t (µ) > K1 (see the proof of
Lemma 4.4.3). By condition (L̄∗(m) : 3), hence, Q̄(2)

t (µ) ≤ K2. Altogether, we conclude that

J̄(µ) = J̄P (τ(K1 + m)) + T − τ(K1 + m),

i.e., the lower bound established in Corollary 4.4.4 is met.

It is of obvious interest to deliver a particular fluid-optimal service discipline. We dedicate
the following subsection to that task.
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4.4.4 A fluid-optimal discipline

The strategy we wish to explore is to serve at full speed, while avoiding serving in vain in the
first station, as well as incurring penalty in the second station. It is suitable to use the length
of the pooled queue to implement this strategy.

Let us begin by introducing µaux ∈ L1
+[0, T ] as

µaux
t =

{
λt if Q̄P

t < K2

µ2
t if Q̄P

t ≥ K2.
(4.4.9)

In order to define an admissible discipline, we need to enforce the cap m on the cumulative
service available. So let

t∗ = inf{t > 0 : It(µaux) ≥ m} ∧ T. (4.4.10)

We claim that the admissible service discipline µ∗ given by

µ∗ = µaux1[0,t∗] (4.4.11)

is fluid optimal. The left graph in Figure 4.1 shows the evolution of the pooled queue length,
while the right graph shows the state of the tandem system in the (Q̄(1), Q̄(2)) quarter-plane.
The intervals of time the pooled queue spends above its threshold K = K1 + K2 correspond to
the intervals of time the state process spends in the region (K1,∞)×{K2}. This correspondence
between the pooled queue and the tandem is valid until the total service rendered in the first
station reaches its constraint. The point at which the constraint is reached is exactly the point
on the right-hand graph at which the state process starts moving in the “south-east” direction.

The netput process of the first queue in tandem at times t preceding t∗ can be represented
as

X̄(1)
t (µ∗) = It(λ− µ∗) =

∫ t

0
(λs − µ2

s)1{Q̄P
s =K2} ds +

∫ t

0
(λs − µ2

s)1{Q̄P
s >K2} ds. (4.4.12)

Thanks to the fact that the length of the pooled queue has the following integral form

Q̄P
t =

∫ t

0
(λs − µ2

s)1{Q̄P
s >0} ds +

∫ t

0
(λs − µ2

s)
+1{Q̄P

s =0} ds, (4.4.13)

we can, setting

fs = (λs − µ2
s)1{Q̄P

s >0} + (λs − µ2
s)

+1{Q̄P
s =0} and F = Q̄P ,

employ results (D.2.4) and (D.2.5) in Appendix D.2 and conclude that the first integral in
(4.4.12) disappears, while the second one reduces to (Q̄P

t −K2)+. This is a nonnegative value,
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Figure 4.1: The Tandem System: A fluid-optimal policy in the case of infinite buffers with
K1 = 0.2 and K2 = 0.1
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allowing us to conclude that for every t ≤ t∗, we have that L̄(1)
t (µ∗) = 0. When combined with

the fact that µ∗(t) = 0 and, hence, L̄(1)
t (µ∗)− L̄(1)

t∗ (µ∗) = 0 for t > t∗, this shows that µ∗ satisfies
condition (L̄∗(m) : 1). We can write

Q̄(1)
t (µ∗) = X̄(1)

t (µ∗) = (Q̄P
t −K2)+, for all t ≤ t∗. (4.4.14)

Moreover, for t ∈ [0, t∗], we have

Q̄(1)
t (µ∗) > K1 ⇔ Q̄P

t > K1 + K2. (4.4.15)

Focusing on the netput process of the second queue, we obtain

X̄(2)
t (µ∗) = It(µ∗ − µ2)

=
∫ t

0
(λs − µ2

s)1{Q̄P
s <K2} ds

=
∫ t

0
(λs − µ2

s) ds−
∫ t

0
(λs − µ2

s)1{Q̄P
s ≥K2} ds.

Using again the integral form (4.4.13) and the definition (4.4.14) along with the the equalities
(D.2.4) and (D.2.5) of Appendix D.2, we conclude that

X̄(2)
t (µ∗) = X̄P

t − (Q̄P
t −K2)+.

Next, we evaluate the regulating term for the second queue L̄(2)(µ∗) on [0, t∗]. For every t ≤ t∗,
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we have that

L̄(2)
t (µ∗) = sup

s≤t
[−X̄(2)

s (µ∗)]

= sup
s≤t

[−(X̄P
s − (Q̄P

s −K2)+)]

= sup
s≤t

[−X̄P
s + (Q̄P

s −K2)+]

≤ sup
s≤t

[−X̄P
s + Q̄P

s ]

≤ sup
s≤t

[−X̄P
s + X̄P

s + L̄P
s ]

= L̄P
t .

We have already proven the opposite inequality in Lemma 4.4.1, so

L̄(2)
t (µ∗) = L̄P

t , for all t ≤ t∗. (4.4.16)

Therefore, for t ≤ t∗, the second queue length equals

Q̄(2)
t (µ∗) = X̄P

t − (Q̄P
t −K2)+ + L̄P

t = Q̄P
t − (Q̄P

t −K2)+ ≤ K2. (4.4.17)

Our goal of not incurring any penalty in the second queue is, hence, achieved, thus showing that
µ∗ satisfies condition (L̄∗(m) : 3.).

Theorem 4.4.7. Let t∗ be defined as in (4.4.10). Then the service discipline µ∗ defined by
(4.4.9) and (4.4.11) is fluid optimal.

Proof. Using (4.4.17) and the fact that on [t∗, T ] the second queue must be nonincreasing, the
performance measure map J̄ evaluated at µ∗ reduces to

J̄(µ∗) = meas {s ∈ [0, T ] : Q̄(1)
s (µ∗) > K1}. (4.4.18)

Let us consider the following two cases.

Case 1. Let Q̄(1)
t∗ (µ∗) > K1. This inequality straightforwardly implies It∗(λ) > m + K1.

Recalling the definition of τ : R+ → [0, T ], given in (3.2.7), we have t∗ ≥ τ(K1 +m). Using
the equality (4.4.18), we can write

J̄(µ∗) ≤ meas {s ∈ [0, τ(K1 + m)] : Q̄(1)
s (µ∗) > K1} + T − τ(K1 + m).

With the fact that t∗ ≥ τ(K1 + m) in mind, we can use the equivalence in (4.4.15) and
obtain

J̄(µ∗) ≤ meas {s ∈ [0, τ(K1 + m)] : Q̄P
s > K1 + K2} + T − τ(K1 + m)

= J̄P (τ(K1 + m)) + T − τ(K1 + m).

Recalling Corollary 4.4.4, we see that the lower bound stated therein must be attained by
policy µ∗.



CHAPTER 4. THE TANDEM NETWORK 63

Case 2. Alternatively, let Q̄(1)
t∗ (µ∗) ≤ K1. Then It∗(λ) ≤ K1 + m, and so t∗ ≤ τ(K1 + m).

For all t ∈ (t∗, τ(K1 + m)), by the definition of τ we have Q̄(1)
t (µ∗) = It(λ) − m ≤ K1.

Thus,

J̄(µ∗) ≤ meas {s ∈ [0, τ(K1 + m)] : Q̄(1)
s (µ∗) > K1} + T − τ(K1 + m)

= meas {s ∈ [0, t∗] : Q̄(1)
s (µ∗) > K1} + T − τ(K1 + m)

= J̄P (t∗) + T − τ(K1 + m),

where the last equality follows from (4.4.15). This, along with Corollary 4.4.4 and the fact
that J̄P (t∗) ≤ J̄P (τ(K1 + m)), implies that

J̄(µ∗) = J̄P (τ(K1 + m)) + T − τ(K1 + m).

4.5 Fluid Limit Analysis in the Finite-Buffer Case.

For any fixed service discipline µ ∈ L1
+[0, T ], again using Theorem 1.2.5, we get

1
n

X(1,n)(µ) → X̄(1)(µ) = I(λ− µ), a.s.,

in the uniform topology. By Corollary 1.2.6, we conclude that also

1
n

Q(1,n)(µ) → Q̄(1)(µ) = ΓK1(I(λ− µ)), a.s., (4.5.1)

uniformly, where ΓK1 is the two-sided reflection map on [0,K1] of Definition 1.2.2. The fluid-limit
of the queue length can be rewritten in the standard way as

Q̄(1)(µ) = X̄(1)(µ) + L̄(1)(µ)− Ū (1)(µ), (4.5.2)

with L̄(1)(µ) and Ū (1)(µ) the regulator maps associated with X̄(1)(µ) and K1 as in Definition
1.2.2. As for the second station, using Theorem 1.2.5 and Corollary 1.2.6 again, we have

1
n

X(2,n)(µ) → X̄(2)(µ) = I(µ− µ2)− L̄(1)(µ), a.s.,

uniformly. Applying once more Corollary 1.2.6, we conclude that

1
n

Q(2,n)(µ) → Q̄(2)(µ) = I(µ− µ2)− L̄(1)(µ) + L̄(2)(µ)− Ū (2)(µ), (4.5.3)

almost surely, in the uniform topology, where L̄(2)(µ) and Ū (2)(µ) are the regulator maps asso-
ciated with I(µ− µ2)− L̄(1)(µ) and K2, as described in Definition 1.2.2.
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Having established the limits in (4.5.1) and (4.5.3), we now set up the appropriate fluid-limit
analogue of the sequence of performance measures defined in (4.2.3), i.e., we define the mapping
J̄F : L1

+[0, T ] → R+ as

J̄F (µ) = Ū (1)
T (µ) + Ū (2)

T (µ), for all µ ∈ L1
+[0, T ].

We wish to minimize J̄F on the set of all admissible service disciplines L̄(m) and we will do so
using a strategy analogous to the one from the infinite buffer case.

Since there are two regulator processes involved in both stations, the notation is rather
cumbersome in this case. Also certain subclasses of admissible controls appear to be clearly
suboptimal. In particular, it seems reasonable for the controller to use only the service disciplines
µ conforming to the following properties.

• L̄(1)
T (µ) = 0.

In both the infinite-buffer and the finite-buffer problems it is in the controller’s best interest
not to serve “in vain” the first station, as he/she might run out of fuel before time T and
then possibly incur unnecessary cost in the first station. Hence, the condition indicated
above is indeed sensible.

• Ū (2)
T (µ) = 0.

In the infinite-buffer case, the penalties in both queues were accumulated independently
when the queues transgressed over their thresholds. It was not important which queue
was the one causing an increase in the penalty as the costs were equal for both queues and
all the jobs remained in the queues until they were served or time T was reached. To the
contrary, in the finite-buffer case it is important that the first station precedes the second
station. Specifically, it is possible for the following scenario to take place:

1. A job arrives in the first station, while the queue is at its full capacity.

2. The controller decides to speed up the service in order not to lose the job that arrived.

3. The job gets served in the first station and moves on to the second one.

4. The second station is at its full capacity and that same job does not get completed,
after all.

5. The epilogue is that the controller still got penalized for losing the job from the second
station, while he “wasted fuel” on that same job in the first station.

We need to remember that the controller is only penalized for the jobs lost - he/she does
not get rewarded based on how many jobs leave the system in the allotted time. Hence, it
is not necessarily in the controller’s best interest to be serving in the first station relying
on the second station to actually complete the jobs that get sent to it. This explains why it
is preferable to lose jobs in the first station as opposed to losing jobs in the second station,
which is exactly enforced in the announced condition.
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Let us formalize the rationale behind the above conditions by proving it suffices to optimize
the performance measure J̄F over the admissible service disciplines satisfying them.

Lemma 4.5.1. Let µ be an admissible service discipline. Then there exists an admissible dis-
cipline µ′′ which satisfies the following three conditions:

(i) L̄(1)
T (µ′′) = 0.

(ii) Ū (2)
T (µ′′) = 0.

(iii) J̄F (µ) ≥ J̄F (µ′′).

Proof. Let µ be an admissible service discipline. The strategy of the proof consists of construct-
ing from µ the new service discipline µ′′ in two steps. First, we define the auxiliary function µ′

satisfying conditions (i) and (iii) in the lemma. This will simply ease the exposition of the next
step. Then, we use µ′ to find a µ′′ satisfying all three conditions posited in the lemma.

We define the subset A of the interval [0, T ] as A = {t ∈ [0, T ] : Q̄(1)
t (µ) = 0} and the new

service discipline µ′ as

µ′ = µ1Ac + (λ ∧ µ)1A.

Alternatively, we can describe µ′ through the value of its integral. For every t, we have

It(µ′) =
∫ t

0
1A(s)(µs ∧ λs) ds +

∫ t

0
1Ac(s)µs ds

=
∫ t

0
1A(s)µs1{µs≤λs} ds +

∫ t

0
1A(s)λs1{µs>λs} ds +

∫ t

0
1Ac(s)µs ds

=
∫ t

0
µs ds −

∫ t

0
1A(s)(−λs + µs)+ ds

= It(µ)− L̄(1)
t (µ).

(4.5.4)

We claim (and show below) that µ′ is itself an admissible service discipline which does not
require lower regulation in the first station and does not perform worse that µ.

Admissibility. All service disciplines in the fluid-limit context are assumed to be determinis-
tic. So it suffices to verify that µ′ satisfies the constraint m on the cumulative service available.

IT (µ′) =
∫

Ac
µs ds +

∫

A
λs ∧ µs ds ≤

∫ T

0
µs ds ≤ m.

Absence of lower regulation. The netput process in the first station generated by the service
discipline µ′ is

X̄(1)(µ′) = I(λ)− I(µ′).
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Using (4.5.4), we see that the last expression equals

X̄(1)(µ′) = I(λ)− I(µ) + L̄(1)(µ). (4.5.5)

On the other hand, the queue length associated with the service discipline µ is

Q̄(1)(µ) = I(λ)− I(µ) + L̄(1)(µ)− Ū (1)(µ)

which, thanks to (4.5.5), can be rewritten as

Q̄(1)(µ) = X̄(1)(µ′)− Ū (1)(µ). (4.5.6)

The processes L̄(1)(µ′) and Ū (1)(µ′) are, by Proposition 1.2.3, the minimal nondecreasing
processes rendering the queue length to be between 0 and K1, so in view of (4.5.6) we conclude
that

L̄(1)(µ′) ≡ 0,

Ū (1)(µ′) = Ū (1)(µ).
(4.5.7)

Performance. The netput process for the second queue generated by the service discipline
µ′ is

X̄(2)(µ′) = I(µ′)− I(µ2). (4.5.8)

Plugging (4.5.4) into the last expression, we obtain

X̄(2)(µ′) = I(µ)− L̄(1)(µ)− I(µ2). (4.5.9)

We see that this is the same process as the netput process in the second station associated
with µ. Hence, all the derived processes (queue length, regulator processes, etc.) must be the
same as well. In particular,

Ū (2)
T (µ′) = Ū (2)

T (µ).

Gathering together the second line of (4.5.7) and the last display, we obtain that J̄F (µ′) = J̄F (µ).
Having established the desired properties of µ′, we move on to the construction of µ′′. We

define B = {t ∈ [0, T ] : Q̄(2)
t (µ′) = K2} and the integrable function

µ′′ = µ′1Bc + (µ′ ∧ µ2)1B .

A useful representation of the integral of µ′′ is the following:

It(µ′′) =
∫ t

0
µ′

s1Bc(s) ds +
∫ t

0
(µ′

s ∧ µ2
s)1B(s) ds

=
∫ t

0
µ′

s ds +
∫ t

0
(µ′

s ∧ µ2
s − µ′

s)1B(s) ds

= It(µ′)− Ū (2)
t (µ′), for every t.

(4.5.10)
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Now we prove that µ′′ indeed satisfies the three conditions declared in the lemma.
Admissibility. The appropriate bound on the integral of the function µ′′ over the interval

[0, T ] is established as follows.

IT (µ′′) =
∫

Bc
µ′

s ds +
∫

B
µ′

s ∧ µ2
s ds ≤

∫ T

0
µ′

s ds ≤ m.

Absence of upper regulation in the second station. The netput process for the second station
for the service discipline µ′′ is simply

X̄(2)(µ′′) = I(µ′′)− L̄(1)(µ′′)− I(µ2).

Inserting the result of (4.5.10) into the expression in the last display, we get

X̄(2)(µ′′) = I(µ′)− Ū (2)(µ′)− L̄(1)(µ′′)− I(µ2). (4.5.11)

Applying the two-sided regulator map to the netput process X̄(2)(µ′′) and expanding the result
utilizing the minimal lower and upper regulators in the sense of Definition 1.2.2, we obtain

Q̄(2)(µ′′) = X̄(2)(µ′′) + L̄(2)(µ′′)− Ū (2)(µ′′). (4.5.12)

Recalling the netput process X̄(2)(µ′) in (4.5.8), we see that the result of the regulation in the
second queue when µ′ is used can be expressed as

Q̄(2)(µ′) = I(µ′)− I(µ2) + L̄(2)(µ′)− Ū (2)(µ′)

= I(µ′)− Ū (2)(µ′)− L̄(1)(µ′′)− I(µ2) + L̄(1)(µ′′) + L̄(2)(µ′).

According to (4.5.11) we can rewrite the the last result as

Q̄(2)(µ′) = X̄(2)(µ′′) + L̄(1)(µ′′) + L̄(2)(µ′). (4.5.13)

By definition, the quantity in the last display is always nonnegative and smaller than or equal
to K2. Comparing (4.5.12) to (4.5.13) and with Proposition 1.2.3 in mind, we can conclude that
Ū (2)(µ′′) ≤ 0 and hence

Ū (2)(µ′′) ≡ 0. (4.5.14)

Absence of lower regulation in the first station. The netput process for the first queue when
µ′′ is used equals

X̄(1)(µ′′) = I(λ)− I(µ′′) = I(λ)− I(µ′) + Ū (2)(µ′).
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Therefore, the queue length obtained when the two-sided regulator map is applied to X̄(1)(µ′′)
is given by

Q̄(1)(µ′′) = I(λ)− I(µ′) + Ū (2)(µ′) + L̄(1)(µ′′)− Ū (1)(µ′′),

where L̄(1)(µ′′) and Ū (1)(µ′′) are the regulator maps associated with X̄(1)(µ′′) and K1 in the
sense of Definition 1.2.2. Simultaneously, the queue length in the first station produced by the
service discipline µ′ is equal to

Q̄(1)(µ′) = I(λ)− I(µ′) + L̄(1)(µ′)− Ū (1)(µ′)

= I(λ)− I(µ′) + Ū (2)(µ′) + L̄(1)(µ′)− Ū (1)(µ′)− Ū (2)(µ′).

The last display, along with Proposition 1.2.3, implies that

L̄(1)(µ′′) ≤ L̄(1)(µ′)

Ū (1)(µ′′) ≤ Ū (1)(µ′) + Ū (2)(µ′).
(4.5.15)

Using (4.5.7) and the first line above, we conclude that L̄(1)(µ′′) ≡ 0.
Performance. Combining (4.5.14) with the second line of (4.5.15), we get that µ′′ does indeed

outperform µ′ and, hence, µ. This is the last claim that was to be proven.

From now on, we shall refer to the subclass of the space of all admissible disciplines L̄(m)
satisfying conditions (i) and (ii) of Lemma 4.5.1 as L̄′′(m).

4.5.1 The Pooled Queue

Next, we consider the finite-buffer counterpart of the pooled queue introduced in (4.4.2). The
idea of “pooling” the system by ignoring the middle station is the same, except that in the
present case the pooled queue has a finite buffer of size K = K1 + K2. The queue length in this
system is then

Q̄(P ) = ΓK(I(λ− µ2)).

As usual, it is convenient to rewrite this process as

Q̄(P ) = I(λ− µ2) + L̄P − ŪP ,

with L̄P and ŪP being the regulators associated with I(λ− µ2) and K, as in Definition 1.2.2.
As we have witnessed in Subsection 4.4.2, the pooled queue is a useful instrument for the

analysis of the corresponding tandem system only until the time when either the service discipline
has reached the imposed constraint or, even if the total amount of service used did not reach
the constraint m yet, there is not enough time remaining to ever bring the first queue under
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its threshold. We again observe the entire evolution of the performance of the pooled queue in
comparison with the performances of the tandem system with varying controls.

Based on the findings of Lemma 4.5.1, it suffices to consider the performance of the service
disciplines in L̄′′(m) in order to establish a lower bound on the performance of all admissible
service disciplines.

Lemma 4.5.2. For every µ ∈ L̄′′(m) the following inequalities hold true:

(i) ŪP ≤ Ū (1)(µ);

(ii) L̄P ≤ L̄(2)(µ).

Proof. We start by defining two sequences of deterministic times in [0, T ] as follows:

t1 = inf{t > 0 : Q̄P
t = K} ∧ T,

si = inf{t > ti : Q̄P
t = 0} ∧ T, for i ≥ 1,

ti = inf{t > si−1 : Q̄P
t = K} ∧ T, for i > 1.

(4.5.16)

Let us fix an arbitrary admissible µ ∈ L′′(m). Then we have that

I(λ) ≥ I(µ) + Ū (1)(µ) ≥ I(µ), (4.5.17)

where the first inequality uses the facts that L̄(1)(µ) ≥ 0 and Q̄(1)(µ) ≥ 0, while the second
inequality hold trivially because Ū (1)(µ) ≥ 0.

We will prove both claims in the lemma simultaneously, using the principle of mathematical
induction. On the segment [0, t1], the length of the pooled queue equals

Q̄P = X̄P + L̄P .

Its lower regulator L̄P can be written, for all t ∈ [0, t1], as

L̄P
t = sup

s≤t
[−I(λ− µ2)].

Using the last equality and the inequality (4.5.17), we get

L̄P
t ≤ sup

s≤t
[−I(µ− µ2)] = L̄(2)

t (µ),

where the latter equality holds since µ ∈ L̄′′(m) implies that Ū (2)(µ) = 0. On the other hand,
for every t ≤ t1, we have that ŪP

t = 0. By the nonnegativity of the regulator maps, the first
announced inequality holds as well for all t ∈ [0, t1].

Next, we focus on the segment [t1, s1]. By definition, there is no need for lower regulation of
the pooled queue in this region. So, we have that for every t ∈ [t1, s1],

L̄P
t = L̄P

t1 (4.5.18)
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and, therefore, Q̄P
t = X̄P

t + L̄P
t1 − ŪP

t .

Since the regulator maps are by definition nondecreasing, equality (4.5.18) and the just
proven validity of the posited inequalities on the segment [0, t1] imply that

L̄P
t ≤ L̄(2)

t1 (µ) ≤ L̄(2)
t (µ), for every t ∈ [t1, s1]. (4.5.19)

As for the inequality involving the upper regulators, we have that

ŪP
t = sup

s≤t
[Is(λ)− Is(µ2) + L̄P

s −K]+, for every t ∈ [t1, s1].

Since the process ŪP can only increase when Q̄P = K, we can rewrite the last equality using
(4.5.18) and (4.5.19) as

ŪP
t = sup

t1≤s≤t
[Is(λ)− Is(µ2) + L̄P

t1 −K]+

≤ sup
t1≤s≤t

[Is(λ)− Is(µ)−K1]+ + sup
t1≤s≤t

[Is(µ)− Is(µ2) + L̄P
t1 −K2]+

≤ sup
s≤t

[Is(λ)− Is(µ)−K1]+ + sup
t1≤s≤t

[Q̄(2)
s (µ)−K2]+

= sup
s≤t

[Is(λ)− Is(µ)−K1]+

= Ū (1)
t (µ), for every t ∈ [t1, s1].

Let us assume that the posited inequalities hold true on the entire region [0, si−1], for some
i ≥ 2. We will next prove that those claims necessarily carry over from the stated inductive
hypothesis to the segment [si−1, si]. For all t ∈ [si−1, ti] the pooled queue is strictly below the
level K. So

ŪP
t = ŪP

si−1
, for every t ∈ [si−1, ti]. (4.5.20)

Hence, Q̄P
t = X̄P

t + L̄P
t − ŪP

si−1
, and

L̄P
t = L̄P

si−1
∨ sup

si−1≤s≤ti
[−Is(λ) + Is(µ2) + ŪP

si−1
]+. (4.5.21)

Using the inductive hypothesis, we have that

L̄P
si−1

≤ L̄(2)
si−1

(µ). (4.5.22)

On the other hand, using (4.5.17), we obtain

sup
si−1≤s≤ti

[−Is(λ) + Is(µ2) + ŪP
si−1

]+ = sup
si−1≤s≤ti

[−Is(µ)− Ū (1)
s (µ) + Is(µ2) + ŪP

si−1
]+.
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Thanks to the fact that regulator maps are nondecreasing and to the inductive hypothesis, the
quantity in the above expression is exceeded by

sup
si−1≤s≤ti

[−Is(µ) + Is(µ2)]+.

Combining the last upper bound with the inequality (4.5.22) and the expansion in (4.5.21), we
obtain the desired inequality.

The inequality involving the upper regulators is again a simple consequence of the mono-
tonicity of Ū (1) and (4.5.20).

Finally, we tackle the segment [ti, si]. Here, there is no possibility of upward pushing in
the pooled queue, so L̄P

t = L̄P
ti , for every t ∈ [ti, si]. We can immediately conclude from the

monotonicity of the lower regulator in the second queue that the second proposed inequality
holds true in this region. For every t ∈ [ti, si], the amount of downward pushing in the pooled
queue during the segment [ti, t] is given by

sup
ti≤s≤t

[Is(λ)− Is(µ2) + L̄P
ti −K]+

≤ sup
ti≤s≤t

[Is(λ)− Is(µ)−K1]+ + sup
ti≤s≤t

[Is(µ)− Is(µ2) + L̄P
ti −K2]+.

(4.5.23)

Thanks to the inductive hypothesis, the second term on the right-hand side of the above equation
is bounded from above by

sup
ti≤s≤t

[Is(µ)− Is(µ2) + L̄(2)
s (µ)−K2]+ = sup

ti≤s≤t
[Q̄(2)

s (µ)−K2]+ = 0.

We can write

ŪP
t = ŪP

ti ∨ sup
ti≤s≤t

[Is(λ)− Is(µ2) + L̄P
ti −K]+.

According to (4.5.23), the validity of the first proposed claim on the segment [si−1, ti], and the
last equality, we have

ŪP
t ≤ Ū (1)

ti (µ) ∨ sup
ti≤s≤t

[Is(λ)− Is(µ)−K1]+ = Ū (1)
t (µ), for every t ∈ [ti, si].

We proceed with the introduction of a control-dependent time instance τ∗ : L1
+[0, T ] → [0, T ]

given by

τ∗(µ) = inf{t ∈ [0, T ] : It(µ) = m} ∧ T, for all µ ∈ L1
+[0, T ].

In words, the function τ∗ returns for any service discipline the first time its cumulative service
reaches the level m, i.e., the time at which the service constraint we imposed on admissible
disciplines is reached and there can no longer be any service rendered in the first station.
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We claim that the service discipline µ∗,F we define next is fluid-optimal in the context of the
performance measure J̄F . First, let the auxiliary function µaux,F ∈ L1

+[0, T ] be given for every
t as

µaux,F
t =

{
λt if Q̄P

t < K2

µ2
t if Q̄P

t ≥ K2.

Then, the instant at which the service discipline µaux,F reaches the constraint imposed on the
total amount of service available is τ∗(µaux,F ). The admissible service discipline which behaves
like µaux,F for as long as there is service available is, hence,

µ∗,F = µaux,F1[0,τ∗(µaux,F )]. (4.5.24)

Clearly, we have that τ∗(µaux,F ) = τ∗(µ∗,F ). For typographical reasons, we denote this instant
by T ∗ = τ∗(µ∗,F ).

By construction, µ∗,F is admissible. We claim that it, moreover, satisfies equalities (i) and
(ii) of Lemma 4.5.1.

Lemma 4.5.3. The service discipline µ∗,F belongs to the class L̄′′(m). Additionally, we have
that

Ū (1)
t (µ∗,F ) = ŪP

t , for every t ≤ T ∗. (4.5.25)

Proof. We first justify the validity of the two equalities stated in Lemma 4.5.1. In order to do
this, it suffices to verify that the equalities hold true at time T ∗. From that point on there
can no longer be any service in the first station which prevents the increase of both the lower
regulator for the first queue and the upper regulator for the second queue.

Let us begin with the fact that the lower regulator in the first queue vanishes for µ∗,F . For
every t ≤ T ∗, we have that

X̄(1)
t (µ∗,F ) =

∫ t

0
(λs − µ∗,F

s ) ds

=
∫ t

0
(λs − µ2

s)1{Q̄P
s ≥K2} ds

=
∫ t

0
(λs − µ2

s)1{K >Q̄P
s ≥K2} ds +

∫ t

0
(λs − µ2

s)1{Q̄P
s =K} ds

=
∫ t

0
(λs − µ2

s)1{K>Q̄P
s ≥K2} ds +

∫ t

0
(λs − µ2

s)1{Q̄P
s =K} ds

−
∫ t

0
(λs − µ2

s)
+1{Q̄P

s =K} ds +
∫ t

0
(λs − µ2

s)
+1{Q̄P

s =K} ds.

(4.5.26)
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Using the results (D.2.3), (D.2.4) and (D.2.5) of Appendix D.2 with

fs := (λs − µ2
s)1{0<Q̄P

s <K} + (λs − µ2
s)

+1{Q̄P
s =0} − (λs − µ2

s)
−1{Q̄P

s =K}, for all s ∈ [0, T ]
(4.5.27)

and the integral form for the length of the pooled queue

Q̄(P )
t =

∫ t

0
fs ds, (4.5.28)

we transform the final sum of integrals in (4.5.26) to obtain

X̄(1)
t (µ∗,F ) = (Q̄P

t −K2)+ + ŪP
t . (4.5.29)

An immediate consequence of the above calculation is that

X̄(1)
t (µ∗,F )− ŪP

t = (Q̄P
t −K2)+, for every t ≤ T ∗. (4.5.30)

The right-hand side is bounded between 0 and K1. Therefore, by Proposition 1.2.3, we have
that

L̄(1)(µ∗,F ) ≡ 0 (4.5.31)

and

Ū (1)
t (µ∗,F ) ≤ ŪP

t , for every t ≤ T ∗. (4.5.32)

The steps in the proof for absence of upper regulation in the second queue are similar. Based
on the fact that there is no lower regulation in the first station, the netput process in the second
station equals for every t ≤ T ∗

X̄(2)
t (µ∗,F ) =

∫ t

0
(µ∗,F

s − µ2
s) ds

=
∫ t

0
(λs − µ2

s)1{Q̄P
s <K2} ds

=
∫ t

0
(λs − µ2

s)1{0<Q̄P
s <K2} ds +

∫ t

0
(λs − µ2

s)1{Q̄P
s =0} ds

=
∫ t

0
(λs − µ2

s)1{0<Q̄P
s <K2} ds +

∫ t

0
(λs − µ2

s)
+1{Q̄P

s =0} ds

−
∫ t

0
(λs − µ2

s)
+1{Q̄P

s =0} ds +
∫ t

0
(λs − µ2

s)1{Q̄P
s =0} ds

=
∫ t

0
(λs − µ2

s)1{0<Q̄P
s <K2} ds +

∫ t

0
(λs − µ2

s)
+1{Q̄P

s =0} ds

−
∫ t

0
(−λs + µ2

s)
+1{Q̄P

s =0} ds.

(4.5.33)
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Simplifying the sum of the first two integrals in the result above using (D.2.3), (D.2.4) and
(D.2.5) in Appendix D.2 and the integral form of the length of the pooled queue in (4.5.28), we
obtain

X̄(2)
t (µ∗,F ) = Q̄P

t ∧K2 − L̄P
t , for every t ≤ T ∗. (4.5.34)

Somewhat rearranging the terms in the above expression, we get

X̄(2)
t (µ∗,F ) + L̄P

t = Q̄P
t ∧K2, for every t ≤ T ∗.

The right-hand side above is nonnegative and restricted to be below or at the level K2. By
Proposition 1.2.3, we conclude that

Ū (2)(µ∗,F ) ≡ 0. (4.5.35)

Therefore, µ∗,F ∈ L′′(m). By the bounds established in Lemma 4.5.2, we conclude that
Ū (1)

t (µ∗,F ) = ŪP
t , for every t ≤ T ∗.

Note that Lemma 4.5.3 shows that the lower bound on the performance measure established
in Lemma 4.5.2 is indeed tight, as it is attained by the service discipline µ∗,F .

Proposition 4.5.4. The service discipline µ∗,F is fluid-optimal for J̄F . In other words, for any
other admissible service discipline µ, we have that J̄F (µ) ≥ J̄F (µ∗,F ).

Proof. Clearly, it suffices to compare the performance of µ∗,F to the performance of other el-
ements of the class L̄′′(m). So, let us temporarily fix some µ ∈ L̄′′(m). By definition, we have
that Ū (2)

T (µ) = 0, and, hence, that J̄F (µ) = Ū (1)
T (µ).

The total amount of downward pushing in the first queue is evaluated as

Ū (1)
T (µ) = Ū (1)

T ∗ (µ) ∨ sup
s∈(T ∗,T ]

[Is(λ)− Is(µ) + L̄(1)
s (µ)−K1]+.

Since µ ∈ L̄′′(m), this can be rewritten as

Ū (1)
T (µ) = Ū (1)

T ∗ (µ) ∨ sup
s∈(T ∗,T ]

[Is(λ)− Is(µ)−K1]+.

Using Lemma 4.5.2 and the constraint on IT (µ), the last expression gets transformed into

Ū (1)
T (µ) ≥ ŪP

T ∗ ∨ sup
s∈(T ∗,T ]

[Is(λ)−m−K1]+ = ŪP
T ∗ ∨ [IT (λ)−m−K1]+. (4.5.36)

On the other hand, at µ∗,F the total amount of upper regulation in the first queue reads

Ū (1)
T (µ∗,F ) = Ū (1)

T ∗ (µ∗,F ) ∨ sup
s∈(T ∗,T ]

[Is(λ)−m−K1]+.
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Using Lemma 4.5.3 and the definition of T ∗, we rewrite the last equality as

Ū (1)
T (µ∗,F ) = ŪP

T ∗ ∨ [IT (λ)−m−K1]+. (4.5.37)

Comparing expressions (4.5.36) and (4.5.37), we obtain the desired inequality.

Remark 4.5.1. This is a good time to discuss the rationale behind the introduction of the
auxiliary infinite-buffer problem. The problem featuring only one-sided regulator maps is evi-
dently more tractable. It also provided us with a class of fluid-optimal class that can be easily
described. Using this class as a starting point allows us to analyze the performance of the finite-
buffer system on this class, which, in turn, helps us to infer the optimality conditions in the
more complicated finite-buffer case.

4.6 Asymptotic Optimality - Infinite Buffers

Definition 4.6.1. A sequence of service processes {µn} is called admissible if µn ∈ L(n)(m)
for all n. Furthermore, an admissible sequence {µ∗

n} is called asymptotically optimal for the
sequence of performance measures {J (n)}, if

lim inf
n→∞

E[J (n)(µn)− J (n)(µ∗
n)] ≥ 0,

for any other admissible sequence {µn}.

The following is a straightforward consequence of the above definition.

Lemma 4.6.2. If {µn} and {µ′
n} are two asymptotically optimal sequences, then

lim
n→∞

E[J (n)(µn)− J (n)(µ′
n)] = 0.

It is our goal to find an asymptotically optimal sequence. The definition of asymptotic
optimality does not allow for an easy algorithm for either verifying if a given sequence is asymp-
totically optimal or constructing an asymptotically optimal sequence. We propose the following,
more operational, criterion for asymptotic optimality.

Proposition 4.6.3. Let {J̃ (n)
LB} be a sequence of random variables such that, for any admissible

sequence {µn}

J (n)(µn) ≥ J̃ (n)
LB , a.s., for every n. (4.6.1)

Furthermore, let the admissible sequence {µ̃n} satisfy

lim
n→∞

E[J (n)(µ̃n)− J̃ (n)
LB ] = 0. (4.6.2)

Then the sequence {µ̃n} is asymptotically optimal in the sense of Definition 4.6.1.
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Proof. Let {µ̃n} and {J̃ (n)
LB} satisfy the conditions of the proposition, and let {µn} be an arbitrary

sequence of admissible service disciplines. Using assumption (4.6.1), we get

lim inf
n→∞

E[J (n)(µn)− J̃ (n)
LB ] ≥ 0,

which combined with (4.6.2) implies

lim inf
n→∞

E[J (n)(µn)− J (n)(µ̃n)]

≥ lim inf
n→∞

E[J (n)(µn)− J̃ (n)
LB ] + lim

n→∞
E[J̃ (n)

LB − J (n)(µ̃n)] ≥ 0.

The following is a trivial consequence of Lemma 4.6.2 and Proposition 4.6.3.

Corollary 4.6.4. Suppose that a sequence of random variables {J̃ (n)
LB} and an asymptotically

optimal sequence {µ̃n} are given as in Proposition 4.6.3. Then for all asymptotically optimal
sequences {µn} we have that

lim
n→∞

E[J (n)(µn)− J̃ (n)
LB ] = 0.

In the next subsection, we will analyze the pooled queue in order to identify an appropriate
sequence {J̃ (n)

LB} of random variables of Corollary 4.6.4.

4.6.1 Analysis of the Pooled Queues

Let us define the pooled queues - queues whose arrival rates correspond to the arrival rates in
the tandem and whose service rates correspond to those in the second station in the tandem.
Formally, for all n we introduce the queue-length process

Q(P, n) = N+
1 (nI(λ))−N−

2 (nI(µ2)) + L(P,n), (4.6.3)

with L(P,n) being the correction term arising from the one-sided regulator of Definition 1.2.1
applied to the process N+

1 (nI(λ)) − N−
2 (nI(µ2)). The following is a trivial consequence of

Corollary 1.2.6.

Corollary 4.6.5. As n →∞, 1
nQ(P,n) → Q̄P , a.s., uniformly, with Q(P,n) from (4.6.3) and Q̄P

from (4.4.2).

The behavior of Q(P, n) in the vicinity of K = K1 + K2 will be of particular interest to us.
The first lemma allows us to restrict our attention to the limiting behavior of the processes
Q(P, n) on a particular “grid”. Note that its claim trivially holds true for integer-valued K1 and
K2.
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Lemma 4.6.6.

lim
n→∞

E
[
meas

{
t ∈ [0, T ] :

1
n

(2nK13+ 2nK23) <
1
n

Q(P, n)
t ≤ K1 + K2

}]
= 0.

Proof. In order to ease the exposition, let us introduce a sequence of constants {k(n)} given by
k(n) := 1

n(2nK13+ 2nK23). Also recall that K = K1 + K2.
For any fixed n, we can partition the set in the expression above and transform the expec-

tation into a sum of expectations in the following way:

E
[
meas

{
t ∈ [0, T ] : k(n) <

1
n

Q(P, n)
t ≤ K

}]

= E
[
meas

{
t ∈ [0, T ] : k(n) <

1
n

Q(P, n)
t ≤ K, Q̄(P )

t < K

}]

+ E
[
meas

{
t ∈ [0, T ] : k(n) <

1
n

Q(P, n)
t ≤ K, Q̄(P )

t = K

}]

+ E
[
meas

{
t ∈ [0, T ] : k(n) <

1
n

Q(P, n)
t ≤ K, Q̄(P )

t > K

}]
.

(4.6.4)

Let us focus on each of the terms in the above sum separately.
Term 1. We claim that, in fact,

meas

{
t ∈ [0, T ] : k(n) <

1
n

Q(P, n)
t ≤ K, Q̄(P )

t < K

}
→ 0, a.s., as n →∞.

Let us temporarily fix an ε > 0 and introduce Aε = {t ∈ [0, T ] : Q̄(P )
t + 3ε < K}. The

measure in the last display can be rewritten as
∫ T

0
1{k(n)< 1

nQ(P, n)
t ≤K, K−3ε≤Q̄(P )

t <K}dt +
∫

Aε

1{k(n)< 1
nQ(P, n)

t ≤K}dt. (4.6.5)

Since k(n) → K as n →∞ there exists an n1 ∈ N, such that

k(n) > K − ε, for all n ≥ n1. (4.6.6)

On the other hand, since 1
nQ(P, n) → Q̄(P ), a.s., uniformly on compacts, i.e., since

∥∥∥∥
1
n

Q(P, n) − Q̄(P )

∥∥∥∥
T

→ 0, a.s.,

there exists a set Ω∗ ∈ F such that P[Ω∗] = 1 and
∥∥∥∥

1
n

Q(P, n)(ω)− Q̄(P )

∥∥∥∥
T

→ 0, for every ω ∈ Ω∗.
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In other words, for ε > 0 fixed above and for every ω ∈ Ω∗, there exists an index n(ω) such that
∥∥∥∥

1
n

Q(P, n)(ω)− Q̄(P )

∥∥∥∥
T

< ε, for every n ≥ n(ω).

In particular, recalling the choice of n1 from (4.6.6), we have that
∥∥∥∥

1
n

Q(P, n)(ω)− Q̄(P )

∥∥∥∥
T

< ε, for every n ≥ n(ω) ∨ n1.

Therefore, for every n ≥ n(ω) ∨ n1 we have

| 1
n

Q(P, n)
t (ω)− Q̄(P )

t | < ε, for every t ∈ [0, T ].

Consequently, the following statement holds true for every n ≥ n(ω) ∨ n1:

1
n

Q
(P, n)
t (ω) < ε + Q̄(P )

t , for every t ∈ Aε.

By definition of the set Aε, the above inequality implies that for every n ≥ n(ω) ∨ n1,

1
n

Q(P, n)
t (ω) < K − 2ε, for every t ∈ Aε.

Recalling the choice of the index n1 from (4.6.6), we get that the last inequality in turn yields
that for every n ≥ n(ω) ∨ n1,

1
n

Q(P, n)
t (ω) < k(n), for every t ∈ Aε.

Thus, for all ω ∈ Ω∗ and for every n ≥ n(ω) ∨ n1 we have
∫

Aε

1
[k(n)< 1

nQ(P, n)
t (ω)≤K]

dt = 0.

Therefore,
∫

Aε

1
[k(n)< 1

n Q
(P, n)
t (ω)≤K]

dt → 0, a.s.

Letting ε go to zero will make the first integral in (4.6.5), which is dominated by
∫ T

0
1{K−3ε≤Q̄P

t <K} dt,

a bound independent of n, vanish as well.
Term 2. Here we aim to prove that

E
[
meas

{
t ∈ [0, T ] : k(n) <

1
n

Q(P, n)
t ≤ K, Q̄(P )

t = K

}]
→ 0.
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Let us define C = {t ∈ [0, T ] : Q̄(P )
t = K}. Furthermore, let Bn = (

√
n(k(n) −K), 0], for every

n and Q̂(P, n)
t =

√
n( 1

nQ(P, n)
t −K), for every n and t.

Using Fubini’s theorem and rearranging the terms, we have

E
[∫

C
1{k(n)< 1

nQ
(P, n)
t ≤K}dt

]
=
∫

C
P[Q̂(P, n)

t ∈ Bn]dt, (4.6.7)

where Q̂(P, n)
t =

√
n( 1

nQ(P, n)
t −K), for all t. Noting that

√
n(K − k(n)) =

√
n

(
K − 1

n
(2nK13+ 2nK23)

)
≤
√

n

(
K − 1

n
(nK1 − 1 + nK2 − 1)

)
=

2√
n

,

we conclude that the sequence {Bn} converges to the singleton {0}. Therefore, we have for all
t ∈ C,

lim sup
n→∞

P
[
Q̂(P, n)

t ∈ Bn

]
≤ lim sup

n→∞
P
[
Q̂(P, n)

t ∈ Bm

]
,

for any fixed m ∈ N. According to Corollary D.3.5, we get that for any m

lim sup
n→∞

P
[
Q̂(P, n)

t ∈ Bm

]
= P[Yt ∈ Bm],

with Yt a diffuse random variable (its exact distribution is not relevant at present). What
remains to be done is to let m go to infinity, and note that Bm → {0}. This implies that the
integrand on the right-hand side of (4.6.7) converges pointwise to zero, and allows Lebesgue’s
dominated convergence theorem to wrap up the proof.

Term 3. This proof would be a repetition of what is done in the proof for Term 1., and so
let us omit it.

4.6.2 The Lower Bound

The pooled system just discussed is a suitable tool for establishing a lower bound on the perfor-
mance measures J (n), in a manner analogous to the fluid limit case.

Lemma 4.6.7. For every n ∈ N, all µ ∈ L(n)(m) and for every t ∈ [0, T ], L(2, n)
t (µ) ≥ L(P,n)

t ,
almost surely.

Proof. For every µ ∈ L(n)(m), we have for all n and t

L(2, n)
t (µ) = sup

s≤t
[−N−

1 (nIs(µ)) + L(1,n)
s (µ) + N−

2 (nIs(µ2))], a.s.

The above equality implies that

L(2, n)
t (µ) = sup

s≤t
[N+

1 (nIs(λ))−N−
1 (nIs(µ)) + L(1,n)

s (µ)−N+
1 (nIs(λ)) + N−

2 (nIs(µ2))]

= sup
s≤t

[Q(1, n)
s −N+

1 (nIs(λ)) + N−
2 (nIs(µ2))].
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almost surely, for every n and t. Since Q(1, n) is by definition nonnegative, the last display yields

L(2, n)
t (µ) ≥ sup

s≤t
[−N+

1 (nIs(λ)) + N−
2 (nIs(µ2))] = L(P, n)

t ,

almost surely, for every n and t.

Lemma 4.6.8. For every n ∈ N and every µ ∈ L(n)(m), we have that

Q(1, n)(µ) + Q(2, n)(µ) ≥ Q(P, n), a.s.

Moreover, for every random time T ′ ∈ [0, T ]
∫ T ′

0

[
1{ 1

nQ
(1, n)
t (µ)>K1}

+ 1{ 1
n Q

(2, n)
t (µ)>K2}

]
dt ≥ meas

{
t ∈ [0, T ′] :

1
n

Q(P, n)
t > K1 + K2

}
, a.s.

Proof. According to (4.4.1) and Lemma 4.6.7, for every n ∈ N and every µ ∈ L(n)(m), we have
that for every t ∈ [0, T ],

Q(1, n)
t (µ) + Q(2, n)

t (µ) = N+
1 (nIt(λ))−N−

2 (nIt(µ2)) + L(2, n)
t (µ)

≥ N+
1 (nIt(λ))−N−

2 (nIt(µ2)) + L(P, n)
t = Q(P, n)

t .

This is exactly the first claim announced in the lemma.
Furthermore, regardless of the choice of µ, for all t such that 1

nQ(P, n)
t > K1 +K2, necessarily

either 1
nQ(1, n)

t (µ) > K1 or 1
nQ(2, n)

t (µ) > K2, yielding the announced lower bound.

Applying Lemma 4.6.8 to T ′ = T , we obtain the final result of this subsection.

Proposition 4.6.9. For every n ∈ N and every µ ∈ L(n)(m)

J (n)(µ) ≥ meas

{
t ∈ [0, T ] :

1
n

Q
(P, n)
t > K1 + K2

}
.

Let us complete the discussion by formally defining the sequence {J (n)
LB}, representing the

just proposed lower bound,

J (n)
LB = meas

{
t ∈ [0, T ] :

1
n

Q(P, n)
t > K1 + K2

}
. (4.6.8)

4.6.3 Definition of the Proposed Optimal Discipline

Let us begin by fixing a function g : N → R+ satisfying the following assumption.

Assumption 4.6.10. For a given fixed constant ε > 0

(i) As n →∞, g(n)
n1+ε →∞.
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(ii) As n →∞, n1+ε ln( g(n)
g(n)+n ) → 0.

We restrict our attention for now to the case m = ∞, i.e., the case in which the amount
of service at our disposal is unbounded, and define the sequence {µn} of admissible service
disciplines as

µn(t) := g(n)[(λt + µ2
t ) ∨ 1]1{Q(1, n)

t (µn)>0, Q
(2, n)
t (µn)<*nK2+}

, (4.6.9)

for every n ∈ N and t ∈ [0, T ]. In words, the proposed policies do not serve when the first queue
is empty (i.e., they are “work-conserving”) or when one more arrival into the second queue would
cause the queue to cross over the threshold; otherwise, the rate of service of proposed policies
is large enough to (asymptotically) cause that the services in the first queue precede the next
arrival into the first station and the next departure from the second one.

In the exposition to follow (i.e., in Subsections 4.6.4-4.6.7) we focus solely on the performance
of the system once the sequence of disciplines {µn} is employed. So we omit the dependence on
the service discipline when referring to the queue lengths and regulator processes.

4.6.4 Bound on the Waiting Time at Bn

For every n, we denote the space of all possible pairs of coordinates representing the lengths of
Q(1, n) and Q(2, n) by

S(n) =
{

(q1, q2) : q1 =
k1

n
, q2 =

k2

n
, k1, k2 ∈ N0

}
. (4.6.10)

Next, we partition this set as S(n) = S(n)
w ∪ S(n)

r ∪ S(n)
p , with S(n)

w , S(n)
r and S(n)

p defined in the
following way:

S(n)
r =

{
(q1, q2) ∈ S(n) : q1 ≤

1
n
2nK13, q2 ≤

1
n
2nK23

}
,

S(n)
p =

{
(q1, q2) ∈ S(n) : q1 + q2 >

1
n

(2nK13+ 2nK23)
}

,

S(n)
w = S(n) − (S(n)

p ∪ S(n)
r ).

For every n, we denote by Bn a particular element of the boundary of S(n)
w . Namely, we set

Bn = ( 1
n(2nK13 + 1), 1

n(2nK23 − 1)). We will be interested in the amount of time the system
spends at Bn. So let us introduce two sequences of stopping times - {σ(n)

i }i representing the
times the system begins a visit to the point Bn, and {ζ(n)

i }i representing the moments of exit
from Bn. Formally, we set

σ(n)
1 = inf{t > 0 : (Q(1, n)

t , Q(2, n)
t ) = nBn} ∧ T,

ζ(n)
i = inf{t > σ(n)

i : (Q(1, n)
t , Q(2, n)

t ) 4= nBn} ∧ T, for all i ∈ N,

σ(n)
i = inf{t > ζ(n)

i−1 : (Q(1, n)
t , Q(2, n)

t ) = nBn} ∧ T, for all i > 1.
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Now, the amount of time the system spends at Bn can be expressed as

meas{t ∈ [0, T ] : (Q(1, n)
t , Q(2, n)

t ) = nBn} =
∑

i∈N
(ζ(n)

i − σ(n)
i ).

By the strong Markov property of the state process (Q(1, n), Q(2, n)), the random variables {ζ(n)
i −

σ(n)
i }i are mutually independent.

Let the sequence of random variables {θ(n)
i }i denote the service times in the first station at

each visit to Bn. The terms in the sequence {ζ(n)
i −σ(n)

i }i are all dominated by the terms in the
sequence {θ(n)

i }i. Furthermore, the sequence {θ(n)
i }i is independent of the arrival process N+

1 ,
by the assumptions of independence imposed on the processes N+

1 and N−
1 .

Let us continue by partitioning the space of all possible trajectories for a given n into mea-
surable sets A(n) and (A(n))c, with A(n) defined as

A(n) = {ω ∈ Ω : N+
1 (nIT (λ))(ω) ≤ n1+ε}, (4.6.11)

with ε the positive constant fixed in Assumption 4.6.10.

Lemma 4.6.11. For every n and i, we have that E[θ(n)
i ] ≤ 1

ng(n) .

Proof. Let us temporarily fix the index n. Then, for every i, the random variable θ(n)
i is non-

negative. Therefore, its expected value can be rewritten as

E
[
θ(n)
i

]
=
∫ ∞

0
P[θ(n)

i > t] dt. (4.6.12)

Let us introduce the sequence of stopping times υi denoting the starting times of visits to nBn

of the state process (Q(1, n), Q(2, n)), i.e., let

υ1 = inf{t > 0 : (Q(1, n)
t , Q(2, n)

t ) = nBn} ∧ T,

υ̂i = inf{t > υi : (Q(1, n)
t , Q(2, n)

t ) 4= nBn} ∧ T,

υi = inf{t > υ̂i−1 : (Q(1, n)
t , Q(2, n)

t ) = nBn} ∧ T.

Then, for every i and t, we have that

P
[
θ(n)
i > t

]
= P

[
N−

1

(
ng(n)

∫ t+υi

υi

(λs + µ2
s) ∨ 1 ds

)
= 0
]

.

Thanks to the monotonicity of the Poisson process N−
1 , we can bound the expression above as

follows:

P
[
θ(n)
i > t

]
≤ P

[
N−

1 (ng(n)t) = 0
]

= e−ng(n)t.
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Thus the expected value in (4.6.12) can be bounded from above in the following manner:

E
[
θ(n)
i

]
≤
∫ ∞

0
e−ng(n)t dt =

1
ng(n)

.

Lemma 4.6.12. As n →∞, E[meas{t ∈ [0, T ] : (Q(1, n)
t , Q(2, n)

t ) = nBn}1A(n) ] → 0.

Proof. Provided that the total number of arrivals into the system does not exceed n1+ε, the
total number of visits to Bn cannot exceed n1+ε. Hence, for all n,

E[meas{t ∈ [0, T ] : (Q(1, n)
t , Q(2, n)

t ) = nBn}1A(n) ]

= E



1A(n)

∑

1≤i≤n1+ε

(ζ(n)
i − σ(n)

i )





≤ E




∑

1≤i≤n1+ε

(ζ(n)
i − σ(n)

i )





≤ E




∑

1≤i≤n1+ε

θ(n)
i





=
∑

1≤i≤n1+ε

E[θ(n)
i ].

Due to Lemma 4.6.11 and the last inequality, we conclude that

E[meas{t ∈ [0, T ] : (Q(1, n)
t , Q(2, n)

t ) = nBn}1A(n) ] ≤
n1+ε

ng(n)
=

nε

g(n)
.

Invoking Assumption 4.6.10, we get the desired result.

Lemma 4.6.13. As n →∞, P[A(n)] → 1.

Proof. By definition, for all n, we have

1− P[A(n)] = P[(A(n))c] = P[N+
1 (nIT (λ))(ω) > n1+ε] ≤ nIT (λ)

n1+ε
=

IT (λ)
nε

.

Letting n →∞ completes the argument.

Proposition 4.6.14. As n →∞,

E[meas{t ∈ [0, T ] : (Q(1, n)
t , Q

(2, n)
t ) = nBn}] −→ 0.
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Proof. For all n,

E[meas{t ∈ [0, T ] :(Q(1, n)
t , Q(2, n)

t ) = nBn}]

= E[meas{t ∈ [0, T ] : (Q(1, n)
t , Q(2, n)

t ) = nBn}1A(n) ]

+ E[meas{t ∈ [0, T ] : (Q(1, n)
t , Q(2, n)

t ) = nBn}1(A(n))c ]

≤ E[meas{t ∈ [0, T ] : (Q(1, n)
t , Q(2, n)

t ) = nBn}1A(n) ] + TP[(A(n))c].

By Lemmas 4.6.12 and 4.6.13, the sum on the right-hand side vanishes as n →∞.

4.6.5 The Sequence of Transitions

Let us, for all n, define the sequence {η(n)
i }i of stopping times representing the instances at

which the system driven by service disciplines {µn} changes position; namely, let

η(n)
1 = inf{t > 0 : Q(1, n)

t > 0} ∧ T,

η(n)
i = inf{t > η(n)

i−1 : (Q(1, n)
t , Q(2, n)

t ) 4= (Q(1, n)
η
(n)
i−1

, Q(2, n)
η
(n)
i−1

)} ∧ T, for i > 1.

Among the transitions of the system, we wish to emphasize the difference between the ones
created by a service in the first queue, and the ones occurring due to either an arrival into the
first queue or a completion of service in the second queue. Hence, let us define a sequence of
random variables {Z(n)

i }i, for every n, by

Z(n)
1 = 0,

Z(n)
i =





0 if Q(1, n)

η(n)
i−1

≤ Q(1, n)
η(n)

i
or Q(2, n)

η(n)
i−1

≥ Q(2, n)
η(n)

i

1 otherwise
for all i > 1.

For every n, we focus on indices i not exceeding 2n1+ε such that there is non-zero service
in the first queue at the time preceding the ith transition in the system. More formally, let us
define a sequence of sets {C(n)} as

C(n) = {i ≤ 2n1+ε : Q(1, n)
η(n)

i−1
> 0 and Q(2, n)

η(n)
i−1

< 2nK23}.

We are interested in a bound on the probability of the existence of an instance among the first
2n1+ε transitions preceded by a period of non-zero service in the first queue, such that the
transition i does not occur due to the completion of service in the first queue.

Lemma 4.6.15. Suppose Assumption 4.6.10 holds. As n →∞, P[∃i ∈ C(n), Z(n)
i = 0] → 0.

Proof. For all n,

P[∃i ∈ C(n), Z
(n)
i = 0] = 1− P[∀i ∈ C(n), Z

(n)
i = 1].
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By the strong Markov property of the state process (Q(1, n), Q(2, n)), the random variables
{Z(n)

i }i∈C(n) are independent.
Furthermore, for all i ∈ C(n), the event {Z(n)

i = 1} can be described as the event in which
the random variable governing the service times in the first queue occurs before an arrival into
the first queue or a completion of service in the second one. Let us note that the latter two
events of interest can be regarded as emanating from a single unit Poisson process independent
from N−

1 , and with rate λ + µ2 ∈ L1
+[0, T ].

Invoking the strong Markov Property of the state process (Q(1, n), Q(2, n)) once again, we
realize that, conditionally on C(n), we can interpret

(i) the service process in the first station and

(ii) the Poisson process with rate λ + µ2 which counts both the arrivals into the first station
and the departures from the second station

as at most n1+ε independent pairs of Poisson processes we consider in Corollary D.1.3. Taking
into account Assumption 4.6.10, we see that all the conditions of Corollary D.1.3 are satisfied,
which completes the proof of this lemma.

4.6.6 Bound on the Time Spent in S(n)
w

Let us start by noting that it is straightforward from the definition of {µn} given in (4.6.9) that
the system is never going to reach the set S(n)

w ∩ {(q1, q2) ∈ S(n) : q2 > 1
n2nK23}.

Lemma 4.6.16. As n →∞,

P
[{
∃t ∈ [0, T ] such that

1
n

(Q(1, n)
t , Q(2, n)

t ) ∈ S(n)
w \ {Bn}

}
∩A(n)

]
−→ 0.

Proof. Looking at the possible transitions in the grid S(n), it is evident that a necessary condition
for the system to ever visit S(n)

w \ {Bn} is that a service in the first station took a longer time to
complete then either a new arrival into the first station or a service in the second station. This
event is necessary in order for second coordinate of the state process (Q(1, n)(µn), Q(2, n)(µn)) to
be at 2nK23− 1 while the first coordinate is over its threshold, i.e., at 2nK13+1. Formally, this
is the event that the random variable Z(n)

i assumes a value of 0 for some i ∈ C(n). Therefore,

P
[{
∃t, such that

1
n

(Q(1, n)
t , Q

(2, n)
t ) ∈ S(n)

w \ {Bn}
}
∩A(n)

]
≤ P[∃i ∈ C(n), Z

(n)
i = 0].

Using Lemma 4.6.15 completes the proof.

We are now ready to prove that the expected amount of time the system spends in the set
S(n)

w \ {Bn} vanishes altogether.
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Proposition 4.6.17. As n →∞,

E
[
meas

{
t ∈ [0, T ] :

1
n

(Q(1, n)
t , Q

(2, n)
t ) ∈ S(n)

w \ {Bn}
}]

→ 0.

Proof. The expression in the proposition equals the sum

E
[
meas

{
t ∈ [0, T ] :

1
n

(Q(1, n)
t , Q(2, n)

t ) ∈ S(n)
w \ {Bn}

}
1A(n)

]

+ E
[
meas

{
t ∈ [0, T ] :

1
n

(Q(1, n)
t , Q(2, n)

t ) ∈ S(n)
w \ {Bn}

}
1(A(n))c

]
,

for all n. The first term in the sum is dominated by

T P
[{
∃t, 1

n
(Q(1, n)

t , Q(2, n)
t ) ∈ S(n)

w \ {Bn}
}
∩A(n)

]
,

and it disappears as n → ∞, due to Lemma 4.6.16. The second term is, on the other hand,
dominated by TP[(A(n))c], which also vanishes in the limit, as is seen in Lemma 4.6.13.

When the last proposition is combined with Lemma 4.6.12, we obtain the following result.

Corollary 4.6.18. As n →∞,

E
[
meas

{
t ∈ [0, T ] :

1
n

(Q(1, n)
t , Q

(2, n)
t ) ∈ S(n)

w

}]
→ 0.

4.6.7 The Asymptotic Lower Bound on the Grids

Lemma 4.6.19. For every n ∈ N and every µ ∈ L(n)(m), we have that

J (n)(µ) ≥ meas{t ∈ [0, T ] : Q
(P, n)
t > 2nK13+ 2nK23}, a.s.

Proof. It suffices to prove that for all n, all µ and all t ∈ [0, T ], we have

Q
(P, n)
t > 2nK13+ 2nK23 =⇒ Q

(1, n)
t (µ) > 2nK13 or Q

(2, n)
t (µ) > 2nK23,

almost surely. This implication, however follows straightforwardly from the fact that, by Lemma
4.6.8,

Q
(P, n)
t ≤ Q

(1, n)
t (µ) + Q

(2, n)
t (µ),

across all choices for n, µ and t.
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Let us introduce, for all n, the random variable J (n)
DLB denoting the lower bound obtained in

the last lemma, i.e., let

J
(n)
DLB = meas{t ∈ [0, T ] : Q

(P, n)
t > 2nK13+ 2nK23}. (4.6.13)

Next, we want to verify that the expected values of the sequence of bounds {J (n)
DLB} involving

the pooled queue matches the expected amount of time the pair of queue lengths in the tandem
spends in the region nS(n)

p , provided that the sequence of service disciplines {µn} from the
defining expression (4.6.9) is used.

Lemma 4.6.20. Let {µn} be the sequence of service disciplines defined in (4.6.9). Then, as
n →∞,

E
[
meas

{
t ∈ [0, T ] :

1
n

(Q(1, n)
t , Q(2, n)

t ) ∈ S(n)
p

}
− J (n)

DLB

]
→ 0. (4.6.14)

Proof. For every n, the expectation in (4.6.14) can be expanded in the following way, using the
definitions of the set S(n)

p and the random variable J (n)
DLB ,

E
[
meas

{
t ∈ [0, T ] :

1
n

(Q(1, n)
t , Q(2, n)

t ) ∈ S(n)
p

}
− J (n)

DLB

]

= E[meas{t ∈ [0, T ] : Q(1, n)
t + Q(2, n)

t > 2nK13+ 2nK23}]

− E[meas{t ∈ [0, T ] : Q(P, n)
t > 2nK13+ 2nK23}].

Applying the Fubini-Tonelli theorem to both integrals, as both integrands are nonnegative we
get that the above expectation equals

∫ T

0
(P[Q(1, n)

t + Q(2, n)
t > 2nK13+ 2nK23]− P[Q(P, n)

t > 2nK13+ 2nK23]) dt.

Thus, due to the first result of Lemma 4.6.8 and the above calculation, we have that the expected
value in (4.6.14) is equal to

∫ T

0
P[Q(1, n)

t + Q(2, n)
t > 2nK13+ 2nK23, Q(P, n)

t ≤ 2nK13+ 2nK23] dt. (4.6.15)

For every t, the integrand in (4.6.15) can be dealt with as follows

P
[
Q(1, n)

t + Q(2, n)
t > 2nK13+ 2nK23, Q(P, n)

t ≤ 2nK13+ 2nK23
]
≤ P
[
Q(1, n)

t + Q(2, n)
t 4= Q(P, n)

t

]
.

The right-hand side of the last display converges to zero as n → ∞ by Lemma D.4.1. Using
Lebesgue’s Dominated Convergence Theorem, we conclude that the resulting integral in (4.6.15)
vanishes as well when n →∞. This wraps up the proof.
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With the last lemma completed, we are ready to prove that the difference of the expected
performance of {µn} and the expected values of the lower bounds J (n)

DLB disappears in the limit.

Proposition 4.6.21. As n →∞,

E[J (n)(µn)− J
(n)
DLB ] → 0,

where the sequence {µn} is as defined in (4.6.9).

Proof. Recalling the definition of S(n)
w , for all n,

E[J (n)(µn)− J (n)
DLB ] = E

[
meas

{
t ∈ [0, T ] :

1
n

(Q(1, n)
t , Q(2, n)

t ) ∈ S(n)
w

}]

+ E
[
meas

{
t ∈ [0, T ] :

1
n

(Q(1, n)
t , Q(2, n)

t ) ∈ S(n)
p

}
− J (n)

DLB

]
.

The claims of Corollary 4.6.18 and Lemma 4.6.20 together complete the proof.

We will next establish that the expected value of the difference between the lower bounds
J (n)

LB and their discrete analogues J (n)
DLB vanishes as n → ∞. This will allow us to focus on the

grid S(n), for any n.

Lemma 4.6.22. Let J (n)
LB and J (n)

DLB be defined as in (4.6.8) and (4.6.13), respectively. Then,
as n →∞, E[J (n)

LB − J (n)
DLB ] → 0.

Proof. Directly from the definitions of J (n)
LB and J (n)

DLB , for all n the expectation of their difference
equals

E
[
meas

{
t ∈ [0, T ] :

1
n

(2nK13+ 2nK23) <
1
n

Q
(P, n)
t ≤ K1 + K2

}]
.

The announced convergence is precisely the content of Lemma 4.6.6.

Theorem 4.6.23. As n →∞,

E[J (n)(µn)− J (n)
LB ] −→ 0.

Proof. For all n, we can rewrite the above expectation as

E[J (n)(µn)− J
(n)
LB ] = E[J (n)(µn)− J

(n)
DLB ]− E[J (n)

LB − J
(n)
DLB ].

Combining Proposition 4.6.21 and Lemma 4.6.22, we obtain the result.



CHAPTER 4. THE TANDEM NETWORK 89

4.6.8 The nontrivial constraint m < ∞

Recall that the constraint imposed on the admissible policies is IT (µ) ≤ m for some given
constant m ∈ R ∪∞. Let us begin with the definition of the sequence of random times {τ (n)}
given by

τ (n) = inf{t ∈ [0, T ] : N+
1 (nIt(λ)) > N−

1 (nm) + nK1} ∧ T. (4.6.16)

These times play a role analogous to the one of time τ(K1 +m) in the fluid limit analysis - more
precisely, in Lemma 4.4.3 and Corollary 4.4.4.

By Lemma 4.6.8, for every index n and every admissible control µ ∈ L(n)(m), the inequality

∫ τ (n)

0

[
1{ 1

n Q
(1, n)
t (µ)>K1}

+ 1{ 1
nQ

(2, n)
t (µ)>K2}

]
dt ≥ meas

{
t ∈ [0, τ (n)] :

1
n

Q(P, n)
t > K1 + K2

}

(4.6.17)

holds almost surely. On the other hand, for every t > τ (n), we have that

Q(1, n)
t (µ) ≥ X(1, n)

t (µ) = N+
1 (nIt(λ))−N−

1 (nIt(µ))

> N−
1 (nm) + nK1 −N−

1 (nIt(µ)) ≥ nK1, a.s.
(4.6.18)

Combining inequalities (4.6.17) and (4.6.18) we obtain the following lower bound on the perfor-
mance measure J (n) for any µ ∈ L(n)(m) :

J (n)(µ) ≥ meas

{
t ∈ [0, τ (n)] :

1
n

Q(P, n)
t > K1 + K2

}
+ T − τ (n) =: J (n)

LBF , a.s. (4.6.19)

Let us recall the sequence of service disciplines given in (4.6.9) and define a sequence of stopping
times as

τ
(n)
∗ = inf{t ∈ [0, T ] : It(µn) = m}.

Next, we introduce the following sequence of admissible service disciplines (i.e., service disciplines
conforming to the constraint on the available amount of service)

µ∗
n = µn1[0,τ (n)

∗ ]
. (4.6.20)

Due to the discussion leading to inequality (4.6.19), we have that for every n

J (n)(µ∗
n)− J (n)

LBF =
∫ τ (n)

0
1{ 1

nQ(1, n)
t (µ∗

n)>K1}
+ 1{ 1

nQ(2, n)
t (µ∗

n)>K2}
dt

−meas
{

t ∈ [0, τ (n)] :
1
n

Q(P, n)
t > K1 + K2

}
.
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Using the definition of random times τ (n)
∗ , we can rewrite the above equality as

J (n)(µ∗
n)− J (n)

LBF =
∫ τ (n)∧τ (n)

∗

0

(
1{ 1

n Q
(1, n)
t (µ∗

n)>K1}
+ 1{ 1

n Q
(2, n)
t (µ∗

n)>K2}

)
dt

−meas
{

t ∈ [0, τ (n) ∧ τ (n)
∗ ] :

1
n

Q(P, n)
t > K1 + K2

}

+
∫ τ (n)

τ (n)∧τ (n)
∗

(
1{ 1

nQ(1, n)
t (µ∗

n)>K1}
+ 1{ 1

nQ(2, n)
t (µ∗

n)>K2}

)
dt

−meas
{

t ∈ (τ (n) ∧ τ (n)
∗ , τ (n)] :

1
n

Q(P, n)
t > K1 + K2

}
.

(4.6.21)

On the segment [0, τ (n) ∧ τ (n)
∗ ], we have that µ∗

n = µn. Hence, we can - mutatis mutandis -
reemploy the argument from the present section leading to Theorem 4.6.23 to arrive at the
following conclusion

E
[ ∫ τ (n)∧τ (n)

∗

0

(
1{ 1

n Q(1, n)
t (µ∗

n)>K1}
+ 1{ 1

n Q(2, n)
t (µ∗

n)>K2}

)
dt

−meas

{
t ∈ [0, τ (n) ∧ τ (n)

∗ ] :
1
n

Q(P, n)
t > K1 + K2

}]
→ 0 as n →∞.

(4.6.22)

As for the remaining terms on the right-hand side of (4.6.21), they do not vanish only in the
case that τ (n) > τ (n)

∗ . However, in that case we have that for every t ∈ [τ (n)
∗ , τ (n)]

Q(1, n)
t (µ∗

n) = N+
1 (nIt(λ))−N−

1 (nIt(µ∗
n)) = N+

1 (nIt(λ))−N−
1 (nm).

From the definition of τ (n) (see (4.6.16)), we conclude that Q(1, n)(µ∗
n) ≤ K1 on [τ (n)

∗ , τ (n)]. It is
clear from the construction of µ∗

n that Q(2, n) ≤ K2 at all times. Therefore, there is no penalty
accumulated over the interval [τ (n)

∗ , τ (n)].
On the other hand, the pooled queue is bounded from above by the sum of the two queue

lengths in the tandem system. Thus,

meas
{

t ∈ (τ (n) ∧ τ (n)
∗ , τ (n)] :

1
n

Q(P, n)
t > K1 + K2

}
= 0.

To sum up, there is no contribution to either the penalty or the lower bound over the interval
[τ (n)
∗ , τ (n)]. Thanks to this fact, as well as the expansion in (4.6.21) and the limit in (4.6.22), we

conclude that
E
[
J (n)(µ∗

n)− J (n)
LBF

]
→ 0 as n →∞.

Due to Proposition 4.6.3 applied to the last display along with (4.6.18) and (4.6.19), we can infer
that the sequence {µ∗

n} is indeed asymptotically optimal. One simulated trajectory of the state
process (Q(1,n), Q(2,n)) is displayed in Figure 4.2. One should note that at the point when the
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Figure 4.2: The Tandem System: Asymptotic optimality in the case of infinite buffers
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constraint on the available service is reached the trajectory starts moving in the “south-east”
direction. Before that time, the structure of the trajectory is “triangular” which illustrates the
fact that whenever the state process is strictly within the rectangle [0, nK1]× [0, nK2] and while
the constraint on the total amount of service is not reached, a completion of service in the first
station happens before both a new arrival in the first station and a completion of service in the
second station.

Remark 4.6.1. The time τ (n) is not chosen ad hoc. As n increases, the service disciplines {µ∗
n}

approach optimal performance. Among other things, this means that the amount of upward
pushing in the first station vanishes in the limit, i.e., serving “in vain” disappears. Thus,
asymptotically the first queue will not cross over the threshold between the moment it reaches
the total service constraint and the time τ (n) (if τ (n) is a later time).

4.7 Stochastic vs. Deterministic Service Disciplines

The previous section brought forth a description of a class of asymptotically optimal sequences
of stochastic service disciplines. Obviously, a family of deterministic asymptotically optimal
sequences would be preferable, as the controller could then propose a service up-front without
taking the state of the system throughout the [0, T ] cycle into consideration at all. We prove
this is impossible for certain values of parameters m,λ and µ2.

For the sake of simplicity we immediately assume m = ∞, i.e., there is no constraint on
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the total amount of service at our disposal. Recalling the notion of asymptotic optimality from
Definition 4.6.1, as well as the results leading to Theorem 4.6.23, we see that it suffices to find
values of λ and µ2 and a positive constant π, such that for all deterministic admissible sequences
{µn}

lim inf
n→∞

E[J (n)(µn)− J (n)
LB ] ≥ π. (4.7.1)

Next, we suppose the system parameters satisfy the following condition .

Assumption 4.7.1. I(λ) ≥ I(µ2)

Taking a closer look at the sequence of lower bounds {J (n)
LB}, we realize that Assumption

4.7.1 simplifies the form of the lower bounds significantly, as all reflection eventually disappears
in the pooled system.

Lemma 4.7.2. Let λ and µ2 satisfy Assumption 4.7.1. Then we have that

E
[
J

(n)
LB −meas

{
t ∈ [0, T ] :

1
n

X
(P, n)
t > K1 + K2

}]
→ 0, as n →∞.

Proof. Using Fubini’s theorem to exchange the order of the expectation and taking the Lebesgue
measure in the above expression, we see that the claim of the lemma is equivalent to

∫ T

0

(
P
[

1
n

Q
(P, n)
t > K1 + K2

]
− P

[
1
n

X
(P, n)
t > K1 + K2

])
dt → 0, as n →∞. (4.7.2)

By the Functional Strong Law of Large Numbers, we have that

1
n

X(P, n)
t → X̄P = I(λ− µ2), a.s., as n →∞, (4.7.3)

in the uniform topology. The claim in the last display, along with the continuity of the Skorokhod
mapping yields

1
n

Q(P, n)
t → Γ(X̄P ) = I(λ− µ2), a.s., as n →∞, (4.7.4)

uniformly. Portmanteau’s Theorem applied to the results (4.7.3) and (4.7.4) gives us that

lim
n→∞

P
[

1
n

Q
(P, n)
t > K1 + K2

]
= lim

n→∞
P
[

1
n

X
(P, n)
t > K1 + K2

]
, (4.7.5)

for all t such that X̄P
t 4= K1 + K2.

On the other hand, by Theorems 9.6.1. and 9.6.2. of [Whi02a], we have that as n →∞

√
n

(
1
n

X(P,n) − X̄P

)
⇒ W (I(λ + µ2)),

√
n

(
1
n

Q(P,n) − X̄P

)
⇒ W (I(λ + µ2)),

(4.7.6)
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uniformly, where the second relation uses the fact that Q̄P = X̄P and W denotes the standard
Brownian motion. In particular, for all t such that X̄P

t = K1 + K2, employing Portmanteau’s
Theorem once more (this time to obtain convergence of probabilities from convergence in dis-
tribution to a random variable that admits a density), we get that

lim
n→∞

P
[

1
n

Q(P, n)
t > K1 + K2

]
= lim

n→∞
P
[

1
n

X(P, n)
t > K1 + K2

]

= lim
n→∞

P[W (It(λ + µ2)) > 0] =
1
2
.

(4.7.7)

Combining the limits in (4.7.5) and (4.7.7), and applying the Lebesgue’s Dominated Convergence
Theorem to the integral in (4.7.2), we obtain the announced claim.

In view of the previous lemma, we will from now redefine the lower bound to the performance
measure in question to be

J̆ (n)
LB = meas

{
t ∈ [0, T ] :

1
n

X
(P, n)
t > K1 + K2

}
. (4.7.8)

Its expectation is given by

E[J̆ (n)
LB ] = E

[
meas

{
t ∈ [0, T ] :

1
n

X(P, n)
t > K1 + K2

}]

=
∫ T

0
P
[

1
n

X(P, n)
t > K1 + K2

]
dt.

(4.7.9)

We used Fubini’s theorem to exchange the order of integration. The following partition of [0, T ]
will be convenient in calculations ahead. Let

A = {t ∈ [0, T ] : X̄P
t = K1 + K2}, B = {t ∈ [0, T ] : X̄P

t < K1 + K2}, (4.7.10)

and C = [0, T ] \ (A ∪B). Equation (4.7.9) can now be rewritten as

E[J̆ (n)
LB ] =

∫

A
P
[

1
n

X(P, n)
t > K1 + K2

]
dt +

∫

B
P
[

1
n

X(P, n)
t > K1 + K2

]
dt

+
∫

C
P
[

1
n

X(P, n)
t > K1 + K2

]
dt.

(4.7.11)

The conclusions
∫

B
P
[

1
n

X
(P, n)
t > K1 + K2

]
dt → 0 (4.7.12)

and
∫

C
P
[

1
n

X
(P, n)
t > K1 + K2

]
dt → meas (C) (4.7.13)
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follow straightforwardly from the Strong Law of Large Numbers. The remaining term in (4.7.11)
requires the use of the Central Limit Theorem. We begin by rewriting the integrand as follows

P
[

1
n

X(P, n)
t > K1 + K2

]
= P

[√
n

(
1
n

X(P, n)
t − (K1 + K2)

)
> 0
]

,

for all t ∈ A. By the Central Limit Theorem,
√

n( 1
nX(P, n)

t −K1 + K2) ⇒ Y P
t , as n →∞, where

Y P
t is normally distributed with mean zero. Thus,

P
[√

n

(
1
n

X(P, n)
t −K1 + K2

)
> 0
]
→ 1

2
, as n →∞. (4.7.14)

Combining (4.7.12), (4.7.13) and (4.7.14) with (4.7.11), we get

E[J̆ (n)
LB ] → 1

2
meas(A) + meas(C), as n →∞. (4.7.15)

Returning our attention to (4.7.1), we see that under Assumption 4.7.1 it suffices to provide
λ, µ2 ∈ L1

+[0, T ] and π > 0, such that for all deterministic admissible {µn}

lim inf
n→∞

E[J (n)(µn)] ≥ π +
1
2
meas(A) + meas(C) =: π′. (4.7.16)

Let us proceed with an analysis of the inequality (4.7.16). Since the reflected queue always
dominates its netput process, recalling the definition of J (n) from (4.3.3), a further sufficient
condition for (4.7.16) is

lim inf
n→∞

E
[∫ T

0

(
1

[ 1
n X

(1, n)
t (µn)>K1]

+ 1
[ 1
nX

(2, n)
t (µn)>K2]

)
dt

]
≥ π′. (4.7.17)

Exchanging the order of integration, we see that a sufficient condition for (4.7.17) is

lim inf
n→∞

∫ T

0

(
P
[

1
n

X
(1, n)
t (µn) > K1

]
+ P

[
1
n

X
(2, n)
t (µn) > K2

])
dt ≥ π′. (4.7.18)

Using again the partition of [0, T ] from (4.7.11), we can rewrite the integral on the right-hand
side of (4.7.18) as

∫ T

0

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P
[

1
n

X(2, n)
t (µn) > K2

])
dt

=
∫

A

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt

+
∫

B

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt

+
∫

C

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt,

(4.7.19)
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for any n. A trivial lower bound on the left-hand side of (4.7.19) is obtained by neglecting the
integral over the domain B, which leaves us with the inequality

∫ T

0

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P
[

1
n

X(2, n)
t (µn) > K2

])
dt

≥
∫

A

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt

+
∫

C

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt.

(4.7.20)

Moreover, Fatou’s Lemma applied to (4.7.20) gives us

lim inf
n→∞

∫ T

0

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt

≥
∫

A
lim inf
n→∞

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt

+
∫

C
lim inf
n→∞

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt.

With this, a sufficient condition for (4.7.18) is
∫

A
lim inf
n→∞

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt

+
∫

C
lim inf
n→∞

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt ≥ π′.

(4.7.21)

Let us introduce the following shorthand notation

pn
t (µn) = P

[
1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

]
,

and expand the current notation to include the scaled centered versions of the netput processes
in the prelimit sequence of tandem systems

X̄(1,n)(µ) =
1
n

X(1, n)(µ)− X̄(1)(µ),

X̄(2,n)(µ) =
1
n

X(2, n)(µ)− X̄(2)(µ),
(4.7.22)

for all admissible µ. We next dedicate our attention to the second integrand in (4.7.21). Let t

be an arbitrary instant in C. Then, by definition of the set C, we have

X̄P
t > K1 + K2. (4.7.23)

The notation from (4.7.22) allows us to write

pn
t (µn) = P[X̄(1,n)

t (µn) > K1 − X̄(1)
t (µn)] + P[X̄(2,n)

t (µn) > K2 − X̄(2)
t (µn)].
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It is of interest to find a lower bound for lim inf
n→∞

pn
t (µn), independent of the choice of {µn}.

Let us temporarily fix an arbitrary deterministic sequence {µn} and consider any convergent
subsequence {pnk

t (µnk)} of {pn
t (µn)}, renaming this subsequence {qk} and calling its limit q.

Setting εt = 1
2(X̄P

t − (K1 + K2)) > 0, and recalling the trivial equality

X̄(1)
t (µn) + X̄(2)

t (µn) = X̄P
t , for all n,

we conclude that for any n, X̄(1)
t (µn) ≥ K1 + εt or X̄(2)

t (µn) ≥ K2 + εt. Let {qkl} be a further
subsequence of {qk} such that one of these inequalities holds for all elements, say,

X̄(1)
t (µnkl

) ≥ K1 + εt, for every l. (4.7.24)

As we will see later on, the choice of the first queue is done without loss of generality. Since {qk}
is a convergent sequence, its subsequence {qkl} must also be convergent with the same limit q.
Considering the following consequence of (4.7.24)

qkl ≥ P[X̄
(1,nkl

)
t (µnkl

) > K1 − X̄(1)
t (µnkl

)] ≥ P[X̄
(1,nkl

)
t (µnkl

) > −εt],

we conclude that

q ≥ lim sup
l→∞

P[X̄
(1,nkl

)
t (µnkl

) > −εt].

However, by the Strong Law of Large Numbers,

X̄(1,n)
t (µn) → 0, and X̄(2,n)

t (µn) → 0, (4.7.25)

almost surely. Hence, q ≥ 1.
Having established (4.7.25), we see that the subsequence {qkl}l was indeed constructed with-

out any loss of generality. The same analysis can be conducted for any convergent subsequence
of {pn

t (µn)}n, for any t and any {µn}. Therefore,
∫

C
lim inf
n→∞

(
P
[

1
n

X(1, n)
t (µn) > K1

]
+ P

[
1
n

X(2, n)
t (µn) > K2

])
dt ≥ meas(C)

and the still simpler sufficient condition for deterministic disciplines to perform strictly worse
than the asymptotically optimal stochastic sequence is

∫

A
lim inf
n→∞

pn
t (µn) dt ≥ π +

1
2
meas(A). (4.7.26)

Focusing on the remaining domain of integration A, let us fix an arbitrary deterministic sequence
{µn} and an instant t ∈ A. Again, we consider any convergent subsequence {pnk

t (µnk)}k of
{pn

t (µn)}. Suppressing unnecessary notation, we rename this sequence {qk} and call its limit q.
To ease further exposition, let us denote by αn the values It(µn), for all n. The subsequence

{αnk}k necessarily has a further subsequence {αnkl
}l converging in R̄+ = R+ ∪ {∞} to some

limit we call α. The sequence {qkl}, of course, must converge to q. Different cases, depending
on the value of the limit α, are analyzed next.



CHAPTER 4. THE TANDEM NETWORK 97

Case 1. Let α = ∞, i.e., let {αnkl
}l be a divergent sequence. Then, because X̄(2)(µnkl

) =
I(µnkl

)− I(µ2) we have that

qkl ≥ P[X̄
(2,nkl

)
t (µnkl

) > K2 − αnkl
+ It(µ2)].

Since t ∈ A, it satisfies the equality X̄P
t = It(λ)−It(µ2) = K1+K2. Hence, the above inequality

can be rewritten as

qkl ≥ P[X̄
(2,nkl

)
t (µnkl

) > K2 − αnkl
+ It(λ)− (K1 + K2)]

= P[X̄
(2,nkl

)
t (µnkl

) > −αnkl
+ It(λ)−K1].

Thanks to the limit in (4.7.25) and the fact that {αnkl
}l is assumed to be a divergent sequence

in this case, we conclude that the right hand side of the last display converges to 1. Therefore,
q ≥ 1.

Case 2. Let α ∈ R be such that α > It(λ) − K1 and define υ = 1
2 (α − It(λ) + K1) > 0.

Similarly as in the previous case, we have

qkl ≥ P[X̄
(2,nkl

)
t (µnkl

) > K2 − αnkl
+ It(λ)− (K1 + K2)].

= P[X̄
(2,nkl

)
t (µnkl

) > −αnkl
+ It(λ)−K1].

(4.7.27)

For large enough l, αnkl
> It(λ)−K1 + υ and, therefore, −υ > −αnkl

+ It(λ)−K1. Thus,

P[X̄
(2,nkl

)
t (µnkl

) > −αnkl
+ It(λ)−K1] ≥ P[X̄

(2,nkl
)

t (µnkl
) > −υ].

Plugging the last estimate into (4.7.27) delivers

qkl ≥ P[X̄
(2,nkl

)
t (µnkl

) > −υ] (4.7.28)

for large enough l. Letting l →∞, and with (4.7.25) in mind, we get q ≥ 1.

Case 3. If α ∈ R is such that α < It(λ)−K1, we can proceed with the same discussion as in
Case 2. The only difference is that the estimates analogous to (4.7.27) and (4.7.28) will involve
the first queues in the sequence of tandems instead of the second ones. Again, the outcome is
q ≥ 1.

Case 4. The final case of α = It(λ)−K1 is the most interesting one and will require consid-
eration of three subcases. We start with some more notation. Let νl = √

nkl
(K1−It(λ)+αnkl

),

Y (1,l) = √
nkl

X̄
(1,nkl

)
t (µnkl

) and Y (2,l) = √
nkl

X̄
(2,nkl

)
t (µnkl

).
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According to the Central Limit Theorem,

Y (1,l) ⇒ Y and Y (2,l) ⇒ Z, as l →∞, (4.7.29)

where Y is a normal random variable with mean zero and variance

σ2
Y = It(λ) + lim

l→∞
αnkl

= It(λ) + α,

, and Z is also normal with mean zero, but with variance

σ2
Z = lim

l→∞
αnkl

+ It(µ2) = α + It(µ2).

Since X̄P
t = It(λ− µ2) = K1 + K2, we get that σ2

Z = It(λ) + α− (K1 + K2).
Let {νli} be a subsequence of {νl} converging to a value ν ∈ R̄ = R∪ {−∞,∞}, and let {ri}

denote the subsequence {qkli}. It obviously converges to q. In this notation, we have

ri = P[Y (1,li) > νli ] + P[Y (2,li) > −νli ], for all i. (4.7.30)

Below are the three subcases based on the value of ν.

a. ν = −∞
Let M be an arbitrary positive constant. Then for all sufficiently large i, νli < −M , and

ri ≥ P[Y (1,li) > −M ].

Employing (4.7.29), we conclude that q = lim
i→∞

ri ≥ FY (M), with FY being the distribution
function of Y . Arbitrariness of M allows us to seek the limit as M →∞ and get q ≥ 1.

b. ν = +∞
If we went ahead with the same reasoning as in the previous case, but applied to the
processes derived from the second queues in the sequence of tandems, we would reach the
same conclusion, i.e., q ≥ 1.

c. ν ∈ R
Since the sequence {νli}i converges to the deterministic value ν, and the weak convergence
in (4.7.29) holds true, we can let i →∞ in (4.7.30) and obtain

q = P[Y > ν] + P[Z > −ν].

Backtracking through all the stated cases, we get

q ≥ 1 ∧ (P[Y > ν] + P[Z > −ν]).
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In order to explore this lower bound further, we introduce g : R → R defined as g(x) = P[Y >

x] + P[Z > −x]. Is there an absolute minimum of this function? The answer to this question is
nothing but a simple exercise in calculus.

First, let us rewrite g as g(x) = P[Y < −x] + P[Z < x]. The first derivative of g can be
written as

g′(x) = −fY (−x) + fZ(x), (4.7.31)

with fY and fZ being the probability density functions of Y and Z, respectively. A suitable
form for the derivative is obtained as

g′(x) = − 1√
2πσY

e
− x2

2σ2
Y +

1√
2πσZ

e
− x2

2σ2
Z

=
1√

2πσY
e
− x2

2σ2
Y

(
−1 +

σY

σZ
exp
{
−x2

2
(

1
σ2

Z

− 1
σ2

Y

)
})

.

Solving for x in g′(x) = 0 leads us to the equation

σY

σZ
exp
{
−

x2

2
(

1
σ2

Z

−
1
σ2

Y

)
}

= 1

and its simpler equivalent form

x2 =
2σ2

Y σ
2
Z

K1 + K2
ln
(
σY

σZ

)
. (4.7.32)

Bearing in mind that σY > σZ , we see that there exists a pair of solutions to this equation ±x∗,

with x∗ > 0. Furthermore, for all x such that x2 > x2
∗, g′(x) < 0 and for all x such that x2 < x2

∗,
g′(x) > 0. Therefore, a local minimum is attained at −x∗. Let us find bounds on this value.

g(−x∗) = P[Y < x∗] + P[Z < −x∗]

= 1− P[Y ≥ x∗] + P[Z > x∗]

= 1−
∫ ∞

x∗

(fY (x)− fZ(x)) dx.

Because fY is a density of a normal random variable centered at zero and, hence, an even
function, we have

g(−x∗) = 1−
∫ ∞

x∗

(fY (−x)− fZ(x)) dx.

Recalling that the for all x such that x2 > x2
∗, we have that g′(x) = −(fY (−x)− fZ(x)) < 0, we

conclude that

g(−x∗) < 1.
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Taking the limit lim
x→∞

g(x) = 1, we realize that g(−x∗) is the global minimum. On the other
hand, since x∗ > 0,

g(−x∗) = P[Y < x∗] + P[Z < −x∗] ≥ P[Y < x∗] >
1
2
.

This bound holds regardless of the choice of t; therefore, as long as meas(A) > 0, we have
∫

A
lim inf
n→∞

pn
t (µn) dt >

1
2
meas(A).

Recalling the sufficient condition (4.7.26), we see that if, in addition to Assumption 4.7.1, the
parameters λ and µ2 satisfy the following assumption, it is impossible to approach the asymptot-
ically optimal performance of sequences of stochastic disciplines using a sequence of deterministic
disciplines.

Assumption 4.7.3. Let λ and µ2 satisfy

meas{t ∈ [0, T ] : X̄P
t = K1 + K2} > 0.

Finally, let us provide an example of a set of parameters for the tandem system and a
sequence of deterministic service disciplines such that the above lower bound is achieved.

Example 4.7.4. Let T = 1, m = ∞ and K1 = K2 = 1
3 . Let the arrival rate in the first station

be λ = 1[0, 23 ] and let there be no service in the second station at all, i.e., let µ2 ≡ 0.
This set of parameters obviously satisfies Assumption 4.7.1. The length of the fluid pooled

queue associated with this system equals Q̄P
t = X̄P

t = min(t, 2
3 ). Hence, Assumption 4.7.3 is also

satisfied.
With (4.7.32) in mind, we define the function ν : [23 , T ] → R by

νt = −

√

ln
(

2It(λ)−K1

2It(λ)− 2K1 −K2

)
(2It(λ)−K1)(2It(λ)− 2K1 −K2)

K1 + K2
= −

√
ln (3)

2
.

We see that ν is a constant function. So let us introduce ν∗ =
√

ln (3)
2 .

Next, we define a sequence of deterministic service discipline in the following manner. For
all n, let νn = ν∗√

n
and µn = 1

21[νn, 2
3
]. As n → ∞, we have I(µn) → I(µ∗), uniformly, with

µ∗ = 1
21[0, 23 ]. By Theorem 1.2.5 coupled with the lemma on p.151 from [Bil99], we infer that

1
n

X(1,n)(µn) → X̄(1)(µ∗),

with X̄(1)
t (µ∗) = t

2 ∧
1
3 . The continuity of the Skorokhod map implies

1
n

Q(1,n)(µn) → Γ(X̄(1)(µ∗)) = X̄(1)(µ∗). (4.7.33)
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As for the sequence of second queues in the sequence of tandem systems, we get by the same
token

1
n

X(2,n)(µn) → X̄(2)(µ∗),

for X̄(2)
t (µ∗) = t

2 ∧
1
3 , and

1
n

Q(2,n)(µn) → Γ(X̄(2)(µ∗)) = X̄(2)(µ∗). (4.7.34)

Inheriting the definitions of sets A,B and C from (4.7.10), and seeing that X̄P
t = t ∧ 2

3 ,
we conclude that A = [23 , 1], B = [0, 2

3 ) and C = ∅. The expected penalty in the nth system
becomes

∫ T

0

(
P
[

1
n

Q(1, n)
t (µn) > K1

]
+ P

[
1
n

Q(2, n)
t (µn) > K2

])
dt

=
∫

A

(
P
[

1
n

Q(1, n)
t (µn) > K1

]
+ P

[
1
n

Q(2, n)
t (µn) > K2

])
dt

+
∫

B

(
P
[

1
n

Q(1, n)
t (µn) > K1

]
+ P

[
1
n

Q(2, n)
t (µn) > K2

])
dt.

Let us focus on the region B first. Thanks to (respectively) (4.7.33) and (4.7.34), for any
t ∈ B, we have

1
n

Q(1,n)
t (µn) → X̄(1)

t (µ∗) <
1
3

= K1

and

1
n

Q(2,n)
t (µn) → X̄(2)

t (µ∗) <
1
3

= K2.

Thus, by Lebesgue’s Dominated Convergence Theorem

lim
n→∞

∫

B

(
P
[

1
n

Q(1, n)
t (µn) > K1

]
+ P

[
1
n

Q(2, n)
t (µn) > K2

])
dt = 0.

Evaluating the limiting penalty aggregated over region A requires second order convergence
results for the sequence of tandems. For all t ∈ A, we first bound the first probability in the
integrand above in a natural way as

P
[

1
n

Q(1, n)
t (µn) > K1

]
≥ P

[
1
n

X(1, n)
t (µn) > K1

]

= P
[√

n(
1
n

X(1, n)
t (µn)− It(λ− µn))−

√
n(It(λ− µn)−K1) > 0

]
.
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Using the definition of the sequence {µn}, we further obtain that

P
[

1
n

X(1, n)
t (µn) > K1

]
= P

[√
n(

1
n

X(1, n)
t (µn)− It(λ− µn)) > ν∗

]
.

However, by the Central Limit Theorem, the last probability converges as follows

P
[√

n(
1
n

X(1, n)
t (µn)− It(λ− µn)) > ν∗

]
→ 1− FN

(
ν∗√

It(λ + µ∗)

)
,

where FN denotes the standard normal distribution function. We can further evaluate this limit
using the explicit definitions of the rates involved and obtain

1− FN

(
ν∗

It(λ + µ∗)

)
= 1− FN (ν∗) = 1− FN

(√
ln (3)

2

)
= FN

(
−
√

ln (3)
2

)
.

By the same argument, we get that

P
[

1
n

Q(2, n)
t (µn) > K2

]
≥ P

[
1
n

X(2, n)
t (µn) > K2

]
→ FN (ν∗) = FN

(√
ln (3)

2

)

.

Both limits are independent of the instant t. Therefore, on the segment A, which is of length 1
3 ,

the aggregated penalty equals 1
3(FN (

√
ln (3)

2 ) + FN (−
√

ln (3)
2 )) ≈ 0.26.

Let us now concentrate on the performance of the corresponding pooled queue. This queue
is such that its fluid-limit is strictly below K1 + K2 for all t < 2

3 . On the other hand, for
every t ≥ 2

3 , the centered and scaled queue length, by the Central Limit Theorem converges in
distribution to a normal random variable centered at zero. Over the period [23 , 1], we have that

P[
1
n

X(P,n)
t > K1 + K2] → FN (0) =

1
2
.

The limit of the expected amount of time the pooled queue spends above the level K1 + K2,
hence, equals 1

6 . This value is strictly less than the minimal limiting penalty possible for the
tandem system as evaluated above.

Remark 4.7.1. Taking a closer look at the construction of a particular fluid-optimal discipline
in Subsection 4.4.4, we see that the discipline µ∗ of (4.4.11) and µ∗ of the last example coincide
for the particular choice of parameters in the last example.

4.8 Asymptotic Optimality - Finite Buffers

4.8.1 Reduction to a Sufficient Subclass of Admissible Sequences

We first commit our attention to a simplification of the class of admissible disciplines it suffices
to consider in our optimization problem. The flow of reasoning in the sequel is analogous to the
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one in Lemma 4.5.1 and its proof. While all the statements are plausible, the model and the
notion of control in the stochastic case are more complex and their rigorous treatment requires
a far more detailed approach.

In what follows, we will suppress the index of uniform acceleration n for the sake of simplicity.
All the statements remain valid regardless of the choice of n, and their proofs carry over word-
for-word. In the same spirit, for all µ ∈ B, where B is defined in (B.3.5), we neglect the index
n = 1 and look at the following queue lengths

Q(1)(µ) = N+
1 (I(λ))−N−

1 (I(µ)) + L(1)(µ)− U (1)(µ),

Q(2)(µ) = N−
1 (I(µ))− L(1)(µ)−N−

2 (I(µ2)) + L(2)(µ)− U (2)(µ).
(4.8.1)

All the processes in the above display are interpreted in the fashion consistent with the represen-
tation of the two-sided reflection maps ΓK1 and ΓK2 of Definition 1.2.2 applied to N+

1 (I(λ))−
N−

1 (I(µ)) and N−
1 (I(µ))− L(1)(µ)−N−

2 (I(µ2)), respectively.

Lemma 4.8.1. Consider an admissible service discipline µ ∈ B. Then there exists a service
discipline µ̃ ∈ B such that the following relations hold almost surely:

1. L(1)(µ̃) ≡ 0;

2. U (2)(µ̃) ≡ 0;

3. U (1)(µ̃) ≤ U (1)(µ) + U (2)(µ).

Proof. See Appendix D.5

Based on the above lemma, from now on we consider only admissible service disciplines from
the following space

B∗ = {µ ∈ B : L(1)(µ) ≡ 0 and U (2)(µ) ≡ 0}. (4.8.2)

4.8.2 Lower Bound

We proceed with the definition of the pooled queue with the finite capacity K = K1 + K2,
corresponding to the tandem system described in (4.8.1). The netput process generating the
queue length in this setting equals

XP = N+
1 (I(λ))−N−

2 (I(µ2)). (4.8.3)

Once the two-sided regulator is applied to the process XP , we obtain the length of the pooled
queue and write it in the familiar way using the minimal lower and upper regulator processes,
i.e., we have

QP = N+
1 (I(λ))−N−

2 (I(µ2)) + LP − UP . (4.8.4)
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The next lemma contains the contribution of the pooled queue to a convenient lower bound. Its
proof is a mutatis mutandis repetition of the proof of Lemma 4.5.2, so we exhibit it in Appendix
D.5.

Lemma 4.8.2. For all µ ∈ B∗, we have that

(i) LP ≤ L(2)(µ), almost surely.

(ii) U (1)(µ) ≥ UP , almost surely.

The following is a useful consequence of Lemmas 4.8.1 and 4.8.2.

Corollary 4.8.3. For all µ ∈ B, we have that U (1)(µ) + U (2)(µ) ≥ UP , almost surely.

We have learned in the study of the fluid limit that the comparison with the pooled queue
is informative only in the region before the constraint on the total amount of service causes
necessary upper regulation in the first queue. Hence, we present the following lemma.

Lemma 4.8.4. For every µ ∈ B and every T ′ ≤ T , we have that

U
(1)
T (µ) + U

(2)
T (µ) ≥ UP

T ′ ∨ [N+
1 (IT (λ))−N−

1 (m)−K1]+, a.s.

Proof. As usual, let us fix µ and T ′. According to Lemma 4.8.1, there exists a µ̃ ∈ B∗, such that

U (1)(µ) + U (2)(µ) ≥ U (1)(µ̃), a.s.

Then we have the following chain of inequalities, all holding in the almost sure sense:

U (1)
T (µ̃) ≥ U (1)

T ′ (µ̃) ∨ sup
s∈(T ′,T ]

[N+
1 (Is(λ))−N−

1 (Is(µ̃))−K1]+.

By Lemma 4.8.2, the last inequality yields

U (1)
T (µ̃) ≥ UP

T ′ ∨ sup
s∈(T ′,T ]

[N+
1 (Is(λ)) −N−

1 (Is(µ̃))−K1]+.

Finally, using the constraint on total service available and the increase of Poisson processes, we
get

U (1)
T (µ̃) ≥ UP

T ′(µ̃) ∨ [N+
1 (IT (λ))−N−

1 (m)−K1]+.
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4.8.3 An Asymptotic Lower Bound

Next, we need to explore more thoroughly the limiting behavior of the sequence of pooled queues
{Q(P,n)}, where Q(P,n) = ΓnK(X(P,n)), for the mapping ΓnK from Definition 1.2.2, and

X(P,n) = N+
1 (I(nλ))−N−

2 (nI(µ2)).

Theorem 1.2.5 applied to the sequence of netput processes {X(P,n)} in the pooled system,
yields

1
n

X(P,n) → X̄P = I(λ− µ2), a.s.,

uniformly. By Proposition 1.2.4, we conclude that

1
n

Q(P,n) → Q̄P ,

1
n

L(P,n) → L̄P ,

1
n

U (P,n) → ŪP ,

(4.8.5)

almost surely, uniformly on compacts, where Q̄P = ΓK(X̄P ) and L̄P and ŪP are associated
with X̄P and K in the sense of Definition 1.2.2. All the statements in the previous subsection
regarding the subclass of controls sufficient for optimality and the lower bound on the perfor-
mance is easily generalized to the uniformly accelerated sequence of systems. For every n, we
refer to the sufficient class of controls as

B∗
n = {µ ∈ L(n)(m) : L(1,n)(µ) ≡ 0 and U (2,n)(µ) ≡ 0}. (4.8.6)

Lemma 4.8.5. For every admissible sequence {µn}, we have that

lim inf
n→∞

E[J (n)
F (µn)− J (n)

FLB] ≥ 0,

where

J
(n)
FLB =

1
n

U
(P,n)
T ∗ ∨

[
1
n

N+
1 (nIT (λ)) − 1

n
N−

1 (nm)−K1

]+
(4.8.7)

with

T ∗ = τ∗(µ∗,F ) = inf{t > 0 : It(µ∗,F ) = m} ∧ T, (4.8.8)

and where µ∗,F is the fluid-optimal deterministic service discipline given in (4.5.37).
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Proof. From Lemma 4.8.1, we know that it suffices to consider only admissible sequences {µn}
such that µn ∈ B∗

n, where the subclass B∗
n is defined in (4.8.6). Let us fix such an admissible

sequence {µn}. For every n, the performance of the service discipline µn can be rewritten and
bounded from below in the following fashion:

J (n)
F (µn) =

1
n

U (1,n)
T (µn) +

1
n

U (2,n)
T (µn) ≥ 1

n
U (1,n)

T (µn).

By the second equality in (1.2.6), we can rewrite the lower bound in the last display as

J (n)
F (µn) ≥ 1

n
sup

s∈[0,T ]
[N+

1 (nIs(λ))−N−
1 (nIs(µn)) + L(1,n)

s (µn)− nK1]+

≥ 1
n

sup
s∈[0,T ]

[N+
1 (nIs(λ))−N−

1 (nIs(µn))− nK1]+

=
1
n

(
sup

s∈[0,T ∗]
[N+

1 (nIs(λ))−N−
1 (nIs(µn))− nK1]+

∨ sup
s∈(T ∗,T ]

[N+
1 (nIs(λ)) −N−

1 (nIs(µn))− nK1]+
)

=
1
n

(
U (1,n)

T ∗ (µn) ∨ sup
s∈(T ∗,T ]

[N+
1 (nIs(λ)) −N−

1 (nIs(µn))− nK1]+
)

.

By Corollary 4.8.3 and the last display, we have that

J (n)
F (µn) ≥ 1

n

(
U (P,n)

T ∗ ∨ sup
s∈(T ∗,T ]

[N+
1 (nIs(λ))−N−

1 (nIs(µn))− nK1]+
)

.

Due to the constraint IT (µn) ≤ m and the monotonicity of the Poisson process N−
1 , we

deduce that

J (n)
F (µn) ≥ 1

n

(

U (P,n)
T ∗ ∨ sup

s∈(T ∗,T ]
[N+

1 (nIs(λ)) −N−
1 (nm)− nK1]+

)

.

The above sequence of inequalities evidently implies the announced result.

4.8.4 A Particular Admissible Sequence

Recall the deterministic service discipline µ∗,F defined in (4.5.24) and set µn = µ∗,F , for every
n. Since all the terms in the sequence {µn} are deterministic, they are trivially appropriately
adapted to the filtration constructed in Appendix B.3. Moreover, the constraint on the total
amount of service available is straightforwardly satisfied by the definition of µ∗,F .
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For every n, the lengths of the queues in tandem with µn = µ∗,F as the service discipline are
given by

Q(1,n)(µ∗,F ) = N+
1 (nI(λ))−N−

1 (nI(µ∗,F )) + L(1,n)(µ∗,F )− U (1,n)(µ∗,F ),

Q(2,n)(µ∗,F ) = N−
1 (nI(µ∗,F ))− L(1,n)(µ∗,F )−N−

2 (nI(µ2))

+ L(2,n)(µ∗,F )− U (2,n)(µ∗,F ).

(4.8.9)

The netput process in the first station equals

X(1,n)(µ∗,F ) = N+
1 (nI(λ))−N−

1 (nI(µ∗,F )) (4.8.10)

for every n. By Proposition 1.2.4, we conclude that as n →∞

1
n

Q(1,n)(µ∗,F ) → Q̄(1)(µ∗,F ),

1
n

L(1,n)(µ∗,F ) → L̄(1)(µ∗,F ),

1
n

U (1,n)(µ∗,F ) → Ū (1)(µ∗,F ),

(4.8.11)

almost surely, in the uniform topology, where Q̄(1)(µ∗,F ) = ΓK(X̄(1)(µ∗,F )), and L̄(1)(µ∗,F ) and
Ū (1)(µ∗,F ) are the lower and upper regulators associated with X̄(1)(µ∗,F ) and K1 in the sense of
Definition 1.2.2. Combining (4.8.11) with (4.5.31), we conclude that as n →∞,

1
n

L(1,n)(µ∗,F ) → 0, a.s., (4.8.12)

uniformly. The last display, in conjunction with Theorem 1.2.5, yields that as n →∞

1
n

(
N−

1 (nI(µ∗,F ))−N−
2 (nI(µ2))− L̄(1)(µ∗,F )

)
→ I(µ∗,F − µ2), a.s., (4.8.13)

uniformly. Thanks to Proposition 1.2.4 and (4.5.35), we have

1
n

Q(2,n)(µ∗,F ) → Q̄(2)(µ∗,F ),

1
n

L(2,n)(µ∗,F ) → L̄(2)(µ∗,F ),

1
n

U (2,n)(µ∗,F ) → Ū (2)(µ∗,F ) ≡ 0,

(4.8.14)

almost surely, in the uniform topology.

Lemma 4.8.6. As n →∞,

1
n

(
U (1,n)(µ∗,F )− U (P,n)

)
→ 0, a.s., (4.8.15)

in the uniform topology on the segment [0, T ∗], where T ∗ is given in (4.8.8).
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Proof. From the third limit in display (4.8.11) and Lemma 4.5.3, we conclude that

1
n

U (1,n)(µ∗,F ) → ŪP , a.s., (4.8.16)

uniformly on [0, T ∗]. Combining (4.8.16) with the third claim in (4.8.5), which is made possible
by the continuity of addition in the uniform topology, we obtain the desired result.

A direct consequence of the last lemma is the limiting value of the performance of the
admissible sequence whose terms are identically equal to µ∗,F , up to the deterministic time T ∗.

Corollary 4.8.7. As n →∞, we have that

1
n

(
U (1,n)

T ∗ (µ∗,F ) + U (2,n)
T ∗ (µ∗,F )− U (P,n)

T ∗

)
→ 0, a.s.

Proof. Simple addition of the third limit in (4.8.14) at time T ∗, and the result of Lemma 4.8.6
yields the announced result.

Next, we evaluate the limiting penalty incurred by the service µ∗,F after time T ∗.

Lemma 4.8.8. As n →∞, the following holds true in the almost sure sense:

1
n

[
U (1,n)

T (µ∗,F )− U (P,n)
T ∗ ∨ [N+

1 (nIT (λ))−N−
1 (nm)− nK1]+

]
→ 0. (4.8.17)

Proof. For every n, the total amount of downward pushing in the first station when µ∗,F is used
as the service discipline is

U (1,n)
T (µ∗,F ) = U (1,n)

T ∗ (µ∗,F ) ∨ sup
s∈(T ∗,T ]

[N+
1 (nIs(λ)) −N−

1 (nIs(µ∗,F ))− nK1]+.

By the definition of T ∗, the above equality can be transformed to

U (1,n)
T (µ∗,F ) = U (1,n)

T ∗ (µ∗,F ) ∨ sup
s∈(T ∗,T ]

[N+
1 (nIs(λ))−N−

1 (nm)− nK1]+.

Due to the increase of the Poisson process N+
1 , we further get that

U (1,n)
T (µ∗,F ) = U (1,n)

T ∗ (µ∗,F ) ∨ [N+
1 (nIT (λ))−N−

1 (nm)− nK1]+.

By Lemma D.5.1 and the last display, the left-hand side of the expression (4.8.17) can be bounded
from above by

1
n
|U (1,n)

T ∗ (µ∗,F )− U (P,n)
T ∗ |.

However, this term has limit zero thanks to Lemma 4.8.6.
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Proposition 4.8.9. As n →∞,

J (n)
F (µ∗,F )− J (n)

FLB → 0, a.s.,

where J (n)
FLB is given by (4.8.7).

Proof. Thanks to the third claim in (4.8.14), we can discard the limiting contribution of the
upper regulator in the second queue in the tandem. Hence, as n →∞,

J
(n)
F (µ∗,F )− 1

n
U

(1,n)
T (µ∗,F ) → 0, a.s.

Combining this limit with Lemma 4.8.8 and the third claim in (4.8.5), we obtain the desired
convergence.

4.8.5 Asymptotic Optimality

Finally, we complete the task of formulating and solving the asymptotic control problem in the
finite-buffer setting for the tandem system.

Definition 4.8.10. An admissible sequence {µ∗
n} is called asymptotically optimal for the se-

quence of performance measures {J (n)
F }, if

lim inf
n→∞

E[J (n)
F (µn)− J (n)

F (µ∗
n)] ≥ 0,

for any other admissible sequence {µn}.

Theorem 4.8.11. The sequence identically equal to µ∗,F is asymptotically optimal for perfor-
mance measures {J (n)

F }.

Proof. Let {µn} be any admissible sequence, then we have that

lim inf
n→∞

E[J (n)
F (µn)− J (n)

F (µ∗,F )]

≥ lim inf
n→∞

E[J (n)
F (µn)− J (n)

FLB] + lim
n→∞

E[J (n)
FLB − J (n)

F (µ∗,F )].

Using Lemma 4.8.5 and Proposition 4.8.9, along with boundedness of all random variables
involved, we complete the proof.
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A General Optimization Problem

Here we formulate an abstract control problem and discuss the manner in which it generates
the particular control problems analyzed throughout this document.

A.1 A General Control Problem

Let us return to the general single-station model described in the first paragraph of Subsection
3.1.1. We do not even consider the system with finite capacity. Our only assumptions are that
the arrival process is Poisson with a known rate and that the potential service process is also
Poisson with a rate subject to our control. The natural ambient space for the service rate is the
space of all nonnegative integrable functions on [0, T ], denoted as before by L1

+[0, T ].
Next, we introduce two mappings that encapsulate the cost structure. The mapping J :

L1
+[0, T ] → R+ denotes the penalty incurred by a service discipline. The convex, nondecreasing

function c : R+ → R+ represents the cost associated with the instantaneous service rate, i.e.,
the total cost of a chosen service µ ∈ L1

+[0, T ] is given by

C(µ) =
∫ T

0
c(µs) ds. (A.1.1)

The expression in (A.1.1) implicitly defines the mapping C : L1
+[0, T ] → R+ as the aggregate

cost of service. Hence, for every µ ∈ L1
+[0, T ] its measure of performance is the value of J(µ) +

C(µ). We wish to minimize this value on the set L1
+[0, T ], i.e., we seek the value J∗, where

J∗ = inf
µ∈L1

+[0,T ]
{J(µ) + C(µ)}. (A.1.2)

Lemma A.1.1. With mappings J and C as above, the following equality holds true

J∗ = inf
M≥0

inf{J(µ) + M : µ ∈ L1
+[0, T ], C(µ) ≤ M}. (A.1.3)
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Proof. First, we rewrite J∗ as

J∗ = inf
M≥0

inf{J(µ) + C(µ) : µ ∈ L1
+[0, T ], C(µ) = M}

= inf
M≥0

inf{J(µ) + M : µ ∈ L1
+[0, T ], C(µ) = M}

= inf
M≥0

(
inf{J(µ) : µ ∈ L1

+[0, T ], C(µ) = M} + M
)
.

(A.1.4)

This calculation yields that, in order to prove the lemma, it is enough to prove that

inf
M≥0

inf{J(µ) + C(µ) : µ ∈ L1
+[0, T ], C(µ) = M}

= inf
M≥0

inf{J(µ) + M : µ ∈ L1
+[0, T ], C(µ) ≤ M}.

(A.1.5)

Obviously, the left-hand side of (A.1.5) exceeds or is equal to the right-hand side of the same
expression.

Let us suppose that the left-hand side is strictly greater than the right-hand side in (A.1.5).
Then there necessarily exists a positive constant M ′ such that

J∗ > inf{J(µ) + M ′ : µ ∈ L1
+[0, T ], C(µ) ≤ M ′}.

Moreover, there also exists a nonnegative integrable function µ′ satisfying C(µ) ≤ M ′ and

J∗ > J(µ′) + M ′.

The last inequality contradicts the expression for J∗ which we obtained in (A.1.4).

A.2 Correspondence with the Current Control Problem

In the context of different versions of the control problem we are addressing, the general penalty
function J corresponds either to the mappings counting the number of lost jobs in the finite
buffer model, or to the mappings measuring the amount of time spent above the threshold in
the infinite buffer model.

The cost of instantaneous service c is for us always the identity, which generates the total
cost

∫ T
0 µs ds for a given service discipline µ.

Finally, we do not directly attempt to minimize (A.1.2). Instead, as a stepping stone to this
problem, we restrict our attention to the study of the “inner infimum” in the expression (A.1.3).
The given constraint on the cost (amount) of service is denoted in the main text by m.
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On the Information Structure

B.1 The Filtration

We wish to allow for non-deterministic service disciplines, continuously adapting to the current
state of the system, yet at the same time forbid any anticipation of the state of the system in
the future.

Let us start with the part of flow of information not depending on the service discipline
at all, i.e., which depends on the arrivals into the system only. For the Poisson process with
rate of arrivals ρa, all the arrivals are reflected in the filtration generated by the arrival process
N+(I(ρa)), where N+ is a unit Poisson process. We start the formal construction with the
filtration generated by N+ in the usual manner as

F+
t = σ{s ≤ t : N+(s)}, for all t. (B.1.1)

Of course, what we really need is the filtration generated by the time-changed Poisson process,
so let us introduce filtration

G+
t = F+

It(ρa), for all t. (B.1.2)

The filtration G = {G+
t }t∈[0,T ] gathers all the information on the arrivals in the system available

to the controller.
The other standing assumption on our model is that the process of potential departures from

the system behaves as a time-changed Poisson process as well. So, let as consider the Poisson
point process ξd on the space [0, T ] × [0,∞) with the intensity measure given as the Lebesgue
measure on the said space and denoted by ρd. Then, we can define the filtration containing the
information gathered from the process of potential departures from the system as

Ft = σ(ξ(A);A ∈ B([0, t]× [0,∞))), (B.1.3)
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where B(Y ) denotes the Borel σ−algebra of a metric space Y. The interpretation of this con-
struction is that at each time t, we are able to establish the number of potential departures from
the system as

ξ{(s, x) : s ≤ t, x ≤ µs}.

We define the filtration {Ht}t∈[0,T ] as

Ht = G+
t ∨ Ft, for all t ∈ [0, T ]. (B.1.4)

The filtration {Ht}t∈[0,T ] contains the information on the past and present events in the system
of interest without anticipating the future of the system.

B.2 Flow of Information in the Single Station Problem

We now apply the findings of Appendix B.1 to the specific problem exhibited in Subsection
3.1.3. The following ingredients will be used to define the space of all admissible sequences of
controls in the present problem:

(i) a sequence of independent unit Poisson processes {N (+,n)};

(ii) a sequence of independent Poisson point processes {ξn} on [0, T ]×[0,∞) with the Lebesgue
measure as the intensity measure and also independent of {N (+,n)}.

For every index n, we modify the definition in (B.1.1) to get

F (+,n)
t = σ{s ≤ t : N (+,n)(s)}, for all t, (B.2.1)

and in the manner of (B.1.2) obtain the desired filtration corresponding to the time-changed
Poisson process

G(+,n)
t = F (+,n)

nIt(λ), for all t. (B.2.2)

We set Gn = {G(+,n)
t }t∈[0,T ]. The filtration Gn contains all the information on the arrivals into

the nth system in the sequence announced in Subsection 3.1.1.
Following (B.1.3), we define

F (n)
t = σ(ξn(A);A ∈ B([0, t]× [0,∞))).

Finally, the filtration containing all the information available to the controller in the nth

system is given by

H(n)
t = G(+,n)

t ∨F (n)
t for all t ∈ [0, T ]. (B.2.3)

We say that a nonnegative random function µ on [0, T ] is an admissible service discipline in
the nth system if it is {H(n)

t }−predictable.
x
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B.3 Information Flow in a More General Environment

Herein we set up the appropriate environment for the set of admissible disciplines referred to
repeatedly in the main text. The challenge in doing so lies in reconciling the different time-
scales at which different processes in a certain network develop. Moreover, as is evident from
the models exhibited in Sections 4.1 and 4.3, the control-process itself governs the speed at
which the information is acquired.

Although in this appendix we allow for more general network topologies than the ones
discussed in the main text, we still assume that all the arrival and potential departure processes
are modeled as time-inhomogeneous Poisson processes.

First, let us differentiate between the controlled and the uncontrolled processes in a network.
Let the uncontrolled stochastic processes in a given finite network be denoted by {Ej}J

j=1. The
information accumulated from these, exogenously governed random processes is gathered over
the interval [0, T ] in the filtration G = {Gt}t∈[0,T ] given by

Gt = σ{Ej
s : s ≤ t, 1 ≤ j ≤ J}. (B.3.1)

Let us denote the number of controlled processes in our finite network by V and and let us
momentarily concentrate on a single controlled process indexed by some v ∈ {1, 2, . . . , V }. The
standing assumption is that this process is a time-changed Poisson process. So, let us introduce
a family of independent Poisson point processes {ξ1, ξ2, . . . , ξV } on the space [0, T ]× [0,∞) and
with the Lebesgue measure as the intensity measure. Regardless of the choice of control, the
information gathered from the controlled random process is contained in the filtration

Ft = σ(ξi(A); 1 ≤ i ≤ V, A ∈ B([0, t] × [0,∞))). (B.3.2)

Altogether, combining (B.3.1)and (B.3.2), all the information on the past and the present of
the system is gathered in the filtration {Ht}, where

Ht = Gt ∨ Ft, for all t ∈ [0, T ]. (B.3.3)

B.3.1 Application to the Tandem System

In the context of the control problem in the main text, the construction above is specified in the
following manner.

We temporarily fix the index n in the sequence of tandem stations whose queue lengths
are modeled in (4.2.1) and (4.2.2) or (4.3.1). The exogenously driven processes are the arrival
process into the first station and the potential service process from the second station. Therefore,
the analogue of the expression (B.3.1) for the observation of the behavior of the uncontrolled
processes is

G(n)
t = σ(N+

1 (nIs(λ)), N−
2 (nIs(µ2)) : s ≤ t), for every t ∈ [0, T ]. (B.3.4)
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The only controllable random process is the potential service in the first station. Therefore,
our construction requires only one copy of the family of independent processes indicated earlier.
This simplifies the complete available information record (an analogue of (B.3.3)) to

H(n)
t = G(n)

t ∨F (n)
t , for every t ∈ [0, T ],

with

F (n)
t = σ(ξ(A) : A ∈ B([0, t]× [0,∞))), for all t ∈ [0, T ],

and where ξ is a Poisson point process on [0, t]× [0,∞), independent of N+
1 and N−

2 , and with
the Lebesgue measure as the intensity measure

Finally, let the set of all {H(n)
t }−predictable controls be denoted by L(n). With the extra

constraint m on the available cumulative service enforced in the main text, the space of all
admissible controls is

L(n)(m) = {µ ∈ L(n) : IT (µ) ≤ m, a.s.}.

To ease the notation of Section 4.8, we set

B = L(1)(m). (B.3.5)



Appendix C

The Single Station - Auxiliary
Results

C.1 Monotonicity of Fluid-Regime Performance Measures

In this section we define the class of monotone performance measures in the fluid limit regime, as
well as some properties pertaining to this class. This class will contain the performance measure
specified in (3.2.5). The established properties of the whole class will facilitate the analysis of
that particular performance measure.

C.1.1 Definitions

We shall be exploring a monotonicity feature on the space of performance measures. In order
to facilitate the introduction of an ordering of possible queue lengths, let us define the following
mappings.

Definition C.1.1. We define mappings x, q : R+ × L1
+[0, T ]× L1

+[0, T ] → C, as

x(q0,λ, µ) = q0 + I(λ− µ) and q = Γ ◦ x,

for q0 ≥ 0 and λ and µ nonnegative integrable functions on the segment [0, T ]. We say that the
process q : [0, T ] → R is the fluid-limit queue length processes generated by λ as arrival rate and
µ as service rate, starting at q0.

In future notation, if there is no chance of confusion, we shall suppress the primitive functions
describing the arrival and service rate, simply stating all the claims in terms of the resulting
fluid limit queue.

Definition C.1.2. Let q1, q2 ∈ C be such that q1 ≤ q2 almost everywhere. Then we say that q2

dominates q1, and write q1 - q2.

116
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Definition C.1.3. Let Dom be a subset of R+×L1
+[0, T ]×L1

+[0, T ]. The mapping j : Dom → R
is called an increasing (resp. decreasing) performance measure, if for all (qi

0,λ
i, µi), i = 1, 2, such

that q(q1
0 ,λ

1, µ1) - q(q2
0,λ

2, µ2) (resp. q(q1
0,λ

1, µ1) . q(q2
0,λ

2, µ2)) we have j(q1
0 ,λ

1, µ1) ≤
j(q2

0 ,λ
2, µ2) (resp. j(q1

0 ,λ
1, µ1) ≥ j(q2

0 ,λ2, µ2)). If j is either decreasing or increasing, it will be
referred to as a monotone performance measure.

C.1.2 Examples

Let us take some time to describe a few legitimate (both in the formal and in the intuitive sense)
performance measures which are either monotone or not monotone in the sense of Definition
C.1.3.

Example C.1.4. [Holding cost] Consider a single station, single server system on a time-
interval [0, T ]. The arrival rate is denoted by λ and the service rate by µ. Initially, there are q0

jobs at the station. Whenever there are jobs queued up at the station, a certain holding cost,
depending on the number of queued up jobs, must be paid. Let us denote that cost by a function
h : R+ → R+. Obviously, only nondecreasing h make sense here.

Altogether, the aggregated cost over [0, T ] is given by

j(q0,λ, µ) =
∫ T

0
h(qt(q0,λ, µ)) dt.

Trivially, the performance measure j is monotone in the sense of Definition C.1.3.

Example C.1.5. [Average delay] Let us assume, for simplicity, that all the queues in this
example are initially empty. The length of the queue generated by an arrival rate λ and a
service rate µ can then be unambiguously denoted by q(λ, µ), through the obvious reduction of
the notation introduced in Definition C.1.1. Furthermore, let us introduce the delay in q(λ, µ)
at an instant t ∈ [0, T ] as

dt(λ, µ) = inf{δ > 0 : It(λ) = It−δ(λ) + qt(λ, µ)}.

The average delay on the finite time-horizon [0, T ] is then given by

D(λ, µ) =
1
T

∫ T

0
dt(λ, µ) dt.

The average delay D as a real function of a pair in L1
+[0, T ]×L1

+[0, T ] is the performance measure
we want to test for the monotonicity property of Definition C.1.3.

Consider arrival rates λ1 = λ2 = 1
2λ3 ≡ 1, and service rates µ1 = 2µ2 = 1

2µ3 ≡ 1
2 . The

queues generated by these rates are

q1 = q(λ1, µ1) =
1
2

e, q2 = q(λ2, µ2) =
3
4

e, and q3 = q(λ3, µ3) = e.



APPENDIX C. THE SINGLE STATION - AUXILIARY RESULTS 118

Obviously, q1 - q2 - q3. On the other hand, the delays for all three queues at any time t can
easily be calculated and they equal

dt(λ1, µ1) =
1
2

t, dt(λ2, µ2) =
3
4

t, and dt(λ3, µ3) =
1
2

t.

Therefore, we have D(λ1, µ1) ≤ D(λ2, µ2) and D(λ3, µ3) ≤ D(λ2, µ2). We conclude that average
delay is not a monotone performance measure in the sense of Definition C.1.3.

Example C.1.6. [Lost goods and/or orders] We look at a manufacturing facility with a
finite storage of size K, which is empty at the beginning of a production cycle [0, T ]. The product
is being manufactured at a rate λ and the rate of demand is given by µ.

Since the on-site storage is finite, all goods that are produced after the full capacity is reached
are lost. In fact, the manufacturer needs to pay a penalty c per unit of lost goods (say, there
is a disposal fee, or simply the extra product goes to waste and cannot make up for the cost of
raw material used).

On the other hand, the manufacturer has an agreement with the merchant handling the
product to pay a penalty d per unit of demanded goods that cannot be delivered due to a
shortage in the storage. Also, there is no possibility of a backlog on the merchants orders - all
orders that are not promptly completed are lost to the manufacturer (say, the merchant turns
to another supplier).

We employ the expression for the two-sided regulator in (1.2.5) to display the amount of
goods in the storage of the manufacturing facility as

ΓK(x(λ, µ)) = x(λ, µ) + l(λ, µ)− u(λ, µ),

where l and u are the regulator maps associated with x(λ, µ) and K as in Definition 1.2.2, and
where we used obvious modifications of the notation introduced in Definition C.1.1.

Altogether, the manufacturer’s cost on [0, T ], with rates λ and µ is

j(λ, µ) = c u(λ, µ) + d l(λ, µ). (C.1.1)

Let us check if j is a monotone performance measure.
Suppose that the storage capacity is K = T

4 . Let λ1 = λ2 = λ3 ≡ 1, µ1 ≡ 1, µ2 ≡ 1
2 , and

µ3 ≡ 2. Then we have

q1 = q(λ1, µ1) = 0, q2 = q(λ2, µ2) =
1
2
(
t ∧ T

2
)
, and q3 = q(λ3, µ3) = 0.

Obviously, q1 - q2 and q3 - q2. The corresponding costs, as described in (C.1.1), are

j(λ1, µ1) = 0, j(λ2, µ2) =
cT

4
, and j(λ3, µ3) =

dT

2
.

For instance, the choice of parameters c = 1 and d = 3
4 produces a non-monotone performance

measure.
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Example C.1.7. Let the system consist of a single storage facility with the arrival rate of
products equal to λ ≡ 1. The station supplies the demand stream µ. At the end of the production
period [0, T ], if the remaining supplies exceed the level Kl, these have extra value when compared
to the first Kl products. One can think of the first Kl products as dedicated to a costumer,
and everything exceeding Kl as surplus that can produce extra profit. On the other hand, at
all times at which the queue length exceeds Ku > Kl, an extra storage facility needs to be
opened incurring a flat fee we denote by c. Summing the profit and cost we obtain the mapping
j : L1

+[0, T ]× L1
+[0, T ] → R, of the form

j(q) = (qT (λ, µ)−Kl)+ − c · meas{t ∈ [0, T ] : qt(λ, µ) > Ku}. (C.1.2)

Let us assume that 2Ku ≤ T and consider three possible demand streams

µ1 ≡ 1,

µ2 = 1− Ku

T
,

µ3(t) =
(

1− 2Ku

T

)
1[0, 3T

4 ](t) +
(

1 +
2Ku

T

)
1( 3T

4 ,T ](t).

Along with a common arrival rate λ ≡ 1, these demand rates generate fluid-limit queue length
processes

q1 ≡ 0,

q2(t) =
Ku

T
t,

q3(t) =
2Ku

T
t1[0, 3T

4 ](t) + (3Ku −
2Ku

T
t)1( 3T

4 ,T ](t).

Obviously, q1 - q2 - q3, in the sense of Definition C.1.2. The mapping j defined in (C.1.2)
evaluated at these queue length functions produces

j(q1) = 0,

j(q2) = Ku −Kl,

j(q3) = Ku −Kl −
T

2
.

Hence, j(q1) < j(q2) and j(q3) < j(q2) and j is not monotone in the sense of Definition C.1.3.

C.1.3 Properties

We return to the performance measure considered in Section 3.2, as defined in (3.2.5). Let us
fix an arrival rate λ and consider all initially empty fluid limit queues generated by varying the
service rate µ across L1

+[0, T ]. Formally, the mapping Qλ : L1
+[0, T ] → C is introduced as

Qλ(µ) = Γ(I(λ− µ)), for µ ∈ L1
+[0, T ].
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We can also express Qλ as Qλ(µ) = q(0,λ, µ), in the notation of Definition C.1.1.

Proposition C.1.8. Let us denote by Dom the set {0} × {λ} × L1
+[0, T ] and consider an in-

creasing performance measure j : Dom → R. For a given constant m, define µ∗ = λ1[0,τ(m)],

where τ is defined by (3.2.7). Then

inf
µ∈L̄(m)

j(Qλ(µ)) = j(Qλ(µ∗)),

where

L̄(m) = {µ ∈ L1
+[0, T ] : I(µ)T ≤ m}. (C.1.3)

Proof. It suffices to prove that Qλ(µ∗) - Qλ(µ), for all µ ∈ L̄m. For all t ≤ τ(m), xt(0,λ, µ∗) =
It(λ− µ∗) = 0. Hence, for all t ≤ τ(m), Qλ

t (µ∗) = xt(0,λ, µ∗) = 0 ≤ Qλ
t (µ).

On the other hand, for all t ≥ τ(m), It(µ∗) = Iτ(m)(µ∗) = m. Moreover, for all µ ∈ L̄(m),
and all t, It(µ) ≤ m, by the defining property (C.1.3). Combining these two inequalities, we get
that for all t > τ(m), Qλ

t (µ∗) = It(λ)−m ≤ It(λ− µ) = xt(0,λ, µ) ≤ qt(0,λ, µ) = Qλ
t (µ).

The claim of the proposition follows from the assumed monotonicity of j.

C.2 Inequalities. Tail Events.

C.2.1 General

An Inequality

Lemma C.2.1. For all a, b ∈ R, we have

23(a4 + b4) ≥ (a + b)4 .

Proof. The function f : R −→ R, f(x) = x4 is a convex function. Therefore, for all real numbers
a, b

1
2
(a4 + b4) ≥

(
a + b

2

)4

.

Rearranging the terms in this expression, we get the announced claim.

On Properties Holding Eventually

The reader might wish to review the definition in (1.2.1).
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Lemma C.2.2. Let {Yn} and {Zn} be sequences of random elements on the probability space
(Ω,F , P) taking values in a measurable space (S,S). Suppose that {Yn} and {Zn} satisfy

P[Yn = Zn, ev.] = 1. (C.2.1)

Let A be any measurable subset of S, then the following claim holds

lim
n→∞

[P[Yn ∈ A]− P[Zn ∈ A]] = 0. (C.2.2)

Moreover, we have that

lim
n→∞

P[Yn ∈ A] = lim
n→∞

P[Zn ∈ A], (C.2.3)

in the sense that if any of the above limits exists, then they both exist and are equal.

Proof. For any n, we have

P[Yn ∈ A] = E[1[Yn∈A]] = E[1[Yn∈A]1[Yn=Zn]] + E[1[Yn∈A]1[Yn -=Zn]]. (C.2.4)

Similarly,

P[Zn ∈ A] = E[1[Zn∈A]1[Yn -=Zn]] + E[1[Zn∈A]1[Yn=Zn]]. (C.2.5)

Therefore, the absolute value of the difference of probabilities in (C.2.2) equals

|P[Yn ∈ A]− P[Zn ∈ A]|
= |E[1[Yn∈A]1[Yn=Zn]] + E[1[Yn∈A]1[Yn -=Zn]]

− (E[1[Zn∈A]1[Yn -=Zn]] + E[1[Zn∈A]1[Yn=Zn]])|
= |E[1[Yn∈A]1[Yn -=Zn]]− E[1[Zn∈A]1[Yn -=Zn]]|
≤ 2E[1[Yn -=Zn]]

= 2P[Yn 4= Zn].

By assumption (C.2.1), we have

E[1[Yn -=Zn]] → 0, as n →∞. (C.2.6)

The last two displays imply claim (C.2.2).
Putting together this claim with the existence of one of the limits from (C.2.3) completes

the proof of the lemma.



APPENDIX C. THE SINGLE STATION - AUXILIARY RESULTS 122

C.2.2 Inequalities involving Brownian Motion

Lemma C.2.3. Let (B(n)
t )t∈R+ be a sequence of standard Brownian motions on a common

probability space. Let {αn} be a sequence in [0, T ] and {fn} be a sequence of nondecreasing,
deterministic functions fn : [0, T ] → R such that fn(αn) > 0, and fn(T ) ≤ C, for some posi-
tive constant C. Moreover, let {sn} and {cn} be sequences of positive real numbers satisfying
∞∑

n=1

cn
sn

e−
s2n
2C < ∞. Then we have, as n →∞,

S(n) := cnmeas{t ∈ [αn, T ] : B(n)
fn(t) > sn}→ 0, a.s. (C.2.7)

Proof. By the Borel-Cantelli lemma, it suffices to prove that for any given ε > 0

∞∑

n=1

P[S(n) > ε] < ∞.

For any fixed n, the probability in question reads as

P[S(n) > ε] = P
[
meas{t ∈ [αn, T ] : B(n)

fn(t) > sn} >
ε

cn

]
.

By Markov’s inequality this quantity is dominated by

cn

ε
E[meas{t ∈ [αn, T ] : B(n)

fn(t) > sn}] =
cn

ε

T∫

αn

P[B(n)
fn(t) > sn]dt, (C.2.8)

where the last equality holds by Fubini’s theorem. Let us consider a single instance t ∈ [αn, T ].
We have

P
[
B

(n)
fn(t) > sn

]
= P




B(n)

fn(t)√
fn(t)

>
sn√
fn(t)



 = P
[

Y >
sn√
fn(t)

]

,

where Y is a standard normal random variable. Furthermore, using the fact that fn is non-
decreasing and bounded by C, we obtain the following upper bound on the above probability,
which is independent of t:

P
[
Y >

sn√
C

]
.

Returning to equation (C.2.8), we obtain the following upper bound on its right-hand side:

cnT

ε
P
[
Y >

sn√
C

]
=

cnT

ε

∞∫

sn√
C

ϕ(y)dy,
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where ϕ represents the density of the standard normal distribution. Since sn are assumed to be
positive, this expression is further dominated by

cnT

ε

√
C

sn
ϕ(

sn√
C

) =
T
√

C

ε
√

2π
cn

sn
e−

s2n
2C .

Summing up over n ∈ N, and using the assumption on the sequences {sn} and {cn} we obtain
the desired inequality

∞∑

n=1

P[S(n) > ε] ≤ T
√

C

ε
√

2π

∞∑

n=1

cn

sn
e−

s2n
2C < ∞.

Corollary C.2.4. Let (B(n)
t )t∈R+ be a sequence of standard Brownian motions on a common

probability space. Let {αn} be a sequence in [0, T ] and {fn} be a sequence of nondecreasing,
deterministic functions fn : [0, T ] → R such that fn(αn) > 0 and fn(T ) ≤ C, for some positive

constant C. Let {sn} be a sequence of positive real numbers satisfying
∞∑

n=1

1
sn

e−
s2n
2C < ∞. Then

we have, as n →∞,

S(n) := meas{t ∈ [αn, T ] : B(n)
fn(t) > sn}→ 0, a.s. (C.2.9)

Lemma C.2.5. Let (Bt)t∈R+ be a standard Brownian motion. Let {αn} be a sequence in [0, T ]
and {fn} be a sequence of nondecreasing, deterministic functions fn : [0, T ] → R such that
fn(αn) > 0 and fn(T ) ≤ C, for some positive constant C. Moreover, let {sn} be a divergent
sequence of positive real numbers. Then, as n →∞,

S(n) := meas{t ∈ [αn, T ] : Bfn(t) > sn}→ 0,

in expectation.

Proof. By Fubini’s theorem, it follows that

E[S(n)] = E[meas{t ∈ [αn, T ] : Bfn(t) > sn}] =
T∫

αn

P[Bfn(t) > sn]dt. (C.2.10)

Considering any t ∈ [αn, T ], we observe that

P[Bfn(t) > sn] = P
[

Bfn(t)√
fn(t)

>
sn√
fn(t)

]

= P
[

Y >
sn√
fn(t)

]

,
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where Y is a standard normal random variable. Recalling that fn is nondecreasing and bounded
by C, an upper bound on the above probability is

P
[
Y >

sn√
C

]
.

We can now dominate the right-hand side of (C.2.10) by the quantity

T P
[
Y >

sn√
C

]
= T

∞∫

sn√
C

ϕ(y)dy,

where ϕ represents the density of the standard normal distribution. Since sn are assumed to be
positive, this expression is further dominated by

T
√

C

sn
ϕ

(
sn√
C

)
=

T
√

C√
2π

1
sn

e−
s2n
2C .

As the sequence {sn} is assumed to be divergent, the proof is finished.

We now wish to be able to substitute the term sn in (C.2.9) by a term that depends on t as
well. For simplicity, we discard the dependence of the “time-change” on n.

Lemma C.2.6. Let (Bt)t∈R+ be a Brownian motion and {αn} a sequence in [0, T ]. Let f :
[0, T ] → R be a nondecreasing, deterministic function such that f(αn) > 0, for all n, and let
g : [0, T ] → R be a nonincreasing, deterministic function such that g(t) > 0, for all t < T.

Finally, let {sn} be a divergent sequence of positive real numbers. Then, as n →∞,

S(n) := meas{t ∈ [αn, T ] : Bf(t) > sng(t)}→ 0 (C.2.11)

in expectation.

Proof. In case that g(T ) > 0, the random variable S(n) is dominated by

S(n) = meas{t ∈ [αn, T ] : Bf(t) > sng(T )},

which brings us back to the realm of Lemma C.2.5.
The case when g(T ) = 0 requires a bit more work. Let ε > 0 be an arbitrary constant, and

let δ = g(T − ε) > 0. S(n) can now be conveniently rewritten as

S(n) = meas{t ∈ [αn, T − ε) : Bf(t) > sng(t)} + meas{t ∈ (T − ε, T ] : Bf(t) > sng(t)}
≤ meas{t ∈ [αn, T − ε) : Bf(t) > snδ} + ε.

An application of Lemma C.2.5 and the arbitrariness of ε complete the proof.
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C.2.3 Inequalities Involving Poisson Processes

Lemma C.2.7. Let Y be a unit Poisson process. Then for all positive constants ξ,

E
[
(Yξ − ξ)4

]
= 3ξ2 + ξ.

Proof. Using the facts that the excess kurtosis of the Poisson distribution with parameter ξ

equals 1/ξ, and that its variance is ξ, we get

E
[
(Yξ − ξ)4

]
= ξ2(3 +

1
ξ
) = 3ξ2 + ξ.

Lemma C.2.8. Let Y (1) and Y (2) be independent nonhomogeneous Poisson processes, with
means y(1) and y(2). Assume that 0 < α < β are real constants such that

inf
α<t<β

It(y(1) − y(2)) =: y > 0. (C.2.12)

Then the following inequality holds true

P[ inf
α<t<β

[Y (1)
t − Y (2)

t ] ≤ 0] ≤ 8
y4

[3(Iβ(y(1))2 + Iβ(y(2))2) + Iβ(y(1) + y(2))].

Proof. Let us first compensate the Poisson processes on the left-hand side of (C.2.13), thus
obtaining a martingale, and use condition (C.2.12) to obtain an upper bound. Indeed, we have

P[ inf
α<t<β

[Y (1)
t − It(y(1))− (Y (2)

t − It(y(2))) + It(y(1) − y(2))] ≤ 0]

≤ P
[

inf
α<t<β

[Y (1)
t − It(y(1))− (Y (2)

t − It(y(2)))] ≤ −y
]

≤ P
[

sup
α<t<β

[Y (1)
t − It(y(1))− (Y (2)

t − It(y(2)))]4 ≥ y4
]
.

(C.2.13)

Using the submartingale inequality, a further upper bound for the above expression is

P
[

sup
α<t<β

[Y (1)
t − It(y(1))− (Y (2)

t − It(y(2)))]4 ≥ y4
]

≤ 1
y4

E[(Y (1)
β − Iβ(y(1))− (Y (2)

β − Iβ(y(2))))4].

Using Lemma C.2.7, we see that

E[(Y (1)
β − Iβ(y(1))− (Y (2)

β − Iβ(y(2))))4]

≤ 8[E[(Y (1)
β − Iβ(y(1)))4] + E[(Y (2)

β − Iβ(y(2)))4]]

= 8[3(Iβ(y(1))2 + Iβ(y(2))2) + Iβ(y(1) + y(2))].

The lemma is a direct consequence of the last three displays.
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C.2.4 Inequalities Involving Submartingales

Lemma C.2.9. Let (St)t∈R+ be a submartingale. Let {αn} be a sequence in [0, T ], and let {fn}
be a sequence of nondecreasing, deterministic functions fn : [0, T ] → R such that fn(αn) > 0,
and fn(T ) ≤ C for some positive constant C. Finally, let {sn} and {cn} be sequences of positive

real numbers satisfying
∞∑

n=1

cn
sn

< ∞. Then we have

S(n) := cnmeas{t ∈ [αn, T ] : Sfn(t) > sn}→ 0, a.s.

Proof. It suffices to prove that for all ε > 0,

P[S(n) > ε, i.o.] = 0.

By the Borel-Cantelli Lemma this is equivalent to the inequality

∞∑

n=1

P[S(n) > ε] < ∞.

Temporarily fixing ε > 0 and n ∈ N, and using the Markov inequality followed by Fubini’s
theorem, we get

P[S(n) > ε] ≤ E[S(n)]
ε

=
cn

ε

∫ T

αn

P[Sfn(t) > sn] dt.

Next, we perform the following short calculation finalized by the submartingale inequality

P[S(n) > ε] ≤ cn(T − αn)
ε

P
[

sup
t∈[αn,T ]

Sfn(t) > sn

]

≤ cnT

ε
P
[

sup
u∈[fn(αn), fn(T )]

Su > sn

]

≤ cnT

ε
P
[

sup
u∈[0,C]

Su > sn

]

≤
cnTE[S+

C ]
εsn

.

Summing over all n, we get

∞∑

n=1

P[S(n) > ε] ≤
T E[S+

C ]
ε

∞∑

n=1

cn

sn
< ∞.
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C.3 Limiting Lower Bound - Second Order Analysis

Throughout this section W denotes a standard Brownian motion on the segment [0, T ] and the
standard normal distribution function is denoted by FN . Also, the standard notation of uniform
acceleration (see [Whi02a], e.g.) is used without explicit reiteration of definitions.

In the present section we commit our attention to the infinite-buffer, single-station model
studied in the main text. After the fluid-limit queue length process leaves zero for the last time
in the segment [0, T ], the fluctuation process in the second order approximation is more likely to
be positive than negative. We dedicate the first lemma in this section to this useful observation.

Lemma C.3.1. Let µ ∈ L1
+[0, T ] be a deterministic service rate, and let t∗ = sup{t ∈ [0, T ] :

Q̄t(µ) = 0} ∧ T . Then for all κ ≥ 0 and t, such that T > t ≥ t∗,

P[Q̂t(µ) > κ] ≥ 1− FN

(
κ√

Σt − Σt∗

)
,

where Σ = I(λ+ µ).

Proof. Since for all t > t∗, Q̄t(µ) > 0, we conclude that

Φ−X̄(µ)(t) = Φ−X̄(µ)(t
∗).

Let t̄ = supΦ−X̄(µ)(t∗). The set Φ−X̄(µ)(t∗) is compact (see Corollary 9.3.1. in [Whi02a]), so
it contains its supremum t̄. Along with the defining expression (3.3.3), this allows us to write

Q̂t(µ) = W (It(λ) + It(µ))−W (It̄(λ) + It̄(µ))

+ W (It̄(λ) + It̄(µ)) + sup
s∈Φ−X̄(µ)(t)

[−W (Is(λ) + Is(µ))],

≥ W (It(λ) + It(µ))−W (It̄(λ) + It̄(µ)),

(C.3.1)

for all t ≥ t∗. For any such fixed t, the random variable on the right-hand side of (C.3.1) is
an increment of a Brownian motion. Hence, it is normally distributed, centered at zero with
variance Σt − Σt̄ = It(λ + µ)− It̄(λ + µ). Therefore, for any κ ≥ 0

P[Q̂t(µ) > κ] ≥ P
[
Y >

κ√
Σt − Σt̄

]
≥ P

[
Y >

κ√
Σt − Σt∗

]

= 1− FN

(
κ√

Σt − Σt∗

)
,

where Y denotes a standard normal random variable.

Remark C.3.1. One is tempted to try to work through the simple argument above in the case
of nondeterministic µ. However, this plan requires that the nondeterministic analogue of t̄ be a
stopping time. Otherwise, there is no way to gain information on the distribution of the random
variable on the right-hand side of C.3.1. For a generic nondeterministic µ, there is no reason
that this should be true.
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We continue by considering the behavior of the system in the two regions that are “beyond
our control”, i.e., beyond time τ((K + m)−), when the fluid limit is inevitably at the threshold
or above it.

Lemma C.3.2. Let {µn} be a deterministic admissible sequence. Then necessarily

lim inf
n→∞

E
[
meas

{
t ∈ [0, T ] : It(λ) = K + m, Q̄t(µn) +

1√
n

Q̂t(µn) > K

}]

≥ 1
2
(τ(K + m)− τ((K + m)−)).

Proof. Let {µn} be an arbitrary deterministic admissible sequence. For all n, we can employ
Fubini’s theorem to rewrite the amount of time spent above the threshold K on the set {t :
It(λ) = K + m} as

E
[ τ(K+m)∫

τ((K+m)−)

1{Q̄t(µn)+ 1√
n

Q̂t(µn)>K} dt
]

=

τ(K+m)∫

τ((K+m)−)

P
[
Q̄t(µn) +

1√
n

Q̂t(µn) > K

]
dt.

(C.3.2)

Noticing that for all t ≥ τ((K + m)−) we have

Q̄t(µn) ≥ It(λ)− It(µn) ≥ K + m−m = K, (C.3.3)

we realize that the value in (C.3.2) dominates the quantity

τ(K+m)∫

τ((K+m)−)

P[Q̂t(µn) > 0] dt. (C.3.4)

Moreover, the inequality in (C.3.3) implies strict positivity of Q̄t(µn), for all t ≥ τ((K+m)−).
This validates the employment of Lemma C.3.1, which combined with (C.3.4) gives us the final
lower bound on (C.3.2)

1
2

τ(K+m)∫

τ((K+m)−)

dt =
1
2
(τ(K + m)− τ((K + m)−)).
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Just following the introduction of performance measures J (n), we interpreted them as aggre-
gated unit penalty incurred over the period when the queue length exceeds a given threshold.
Using this nomenclature, we can say that Lemma C.3.2 provides a lower bound for the penalty
accrued before time τ(K + m).

The next lemma is dedicated to the very end of the segment [0, T ]. As it turns out, in the
limit, the system will almost surely be paying full penalty in this region, regardless of the service
discipline employed, as it did in the fluid optimization problem.

Lemma C.3.3. For all deterministic admissible sequences {µn},

meas
{

t ∈ [τ(K + m), T ] : Q̄t(µn) +
1√
n

Q̂t(µn) > K

}
→ T − τ(K + m), (C.3.5)

almost surely, as n →∞.

Proof. The fact that the left-hand side of (C.3.5) is bounded from above by T − τ(K +m) leads
us to the conclude that it suffices to prove

lim inf
n→∞

E[meas{t ∈ [τ(K + m), T ] : Q̄t(µn) +
1√
n

Q̂t(µn) > K}]

≥ T − τ(K + m),
(C.3.6)

in order to prove the full statement of the lemma.
Focusing now on the proof of (C.3.6), we immediately see that, in the case of T = τ(K +m),

the claim trivially holds true. Hence, we concentrate on the case of τ(K + m) < T.

Let {µn} be an arbitrary sequence of admissible disciplines. Then, for all t > τ(K + m) and
all n ∈ N,

Q̄t(µn) ≥ It(λ)− It(µn) > K + m−m = K.

Let us temporarily fix a sufficiently small, positive number ε, satisfying τ(K + m) + ε ≤ T .
We define δ := Iτ(K+m)+ε(λ)−(K+m), and conclude straight from the definition of the mapping
τ that δ is strictly positive. Then for all t ≥ τ(K + m) + ε and all n

Q̄t(µn) ≥ It(λ)− It(µn) > K + m + δ −m = K + δ.

Hence, for all n,

meas
{

t ∈ [τ(K + m), T ] : Q̄t(µn) +
1√
n

Q̂t(µn) > K

}

≥ meas
{

t ∈ [τ(K + m) + ε, T ] : Q̄t(µn) +
1√
n

Q̂t(µn) > K

}

≥ meas
{
t ∈ [τ(K + m) + ε, T ] : Q̂t(µn) > −δ

√
n
}

.

(C.3.7)
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Let us temporarily fix an n ∈ N. Since the fluid limit is in overload, L̄t(µn) = L̄T (µn), for
all t ≥ τ(K + m) + ε. Hence, for all such t,

Φ−X̄(µn)(t) = Φ−X̄(µn)(T ).

Let t∗(µn) = supΦ−X̄(µn)(T ). By Lemma 9.3.3 in [Whi02a], Φ−X̄(µ)(T ) is a compact set, so
t∗(µn) ∈ Φ−X̄(µ)(T ). This allows us to rewrite Q̂t(µn), for t ≥ τ(K + m) + ε, as

Q̂t(µn) = W (It(λ) + It(µn)) + sup
s∈Φ−X̄(µn)(T )

(−W (Is(λ) + Is(µn)))

= W (It(λ) + It(µn))−W (It∗(µn)(λ) + It∗(µn)(µn))

+ W (It∗(µn)(λ) + It∗(µn)(µn)) + sup
s∈Φ−X̄(µn)(T )

(−W (Is(λ) + Is(µn)))

≥ W (It(λ) + It(µn))−W (It∗(µn)(λ) + It∗(µn)(µn)).

(C.3.8)

In order to make the notation less cumbersome, let us introduce the process

Ŵ (n)
t = W (It+t∗(µn)(λ) + It+t∗(µn)(µn))−W (It∗(µn)(λ) + It∗(µn)(µn)),

for t ∈ [0, T − t∗(µn)]. This process depends on µn, but let us suppress that dependence from
the notation for now. Evidently, Ŵ (n) is a Brownian motion with the variance process

Σ(n)
t = It+t∗(µn)(λ) + It+t∗(µn)(µn)− (It∗(µn)(λ) + It∗(µn)(µn)).

Finally, the estimate in (C.3.8) produces the lower bound of the form

meas{t ∈ [τ(K + m) + ε, T ] : Q̂t(µn) > −δ
√

n}

≥ meas{t ∈ [τ(K + m) + ε− t∗(µn), T − t∗(µn)] : Ŵ (n)
t > −δ

√
n}

= T − (τ(K + m) + ε)

−meas{t ∈ [τ(K + m) + ε− t∗(µn), T − t∗(µn)] : Ŵ (n)
t ≤ −δ

√
n}

= T − (τ(K + m) + ε)

−meas{t ∈ [τ(K + m) + ε− t∗(µn), T − t∗(µn)] : −Ŵ (n)
t ≥ δ

√
n}

= T − (τ(K + m) + ε)

−meas




t ∈ [τ(K + m) + ε− t∗(µn), T − t∗(µn)] : − Ŵ (n)
t√
Σ(n)

t

≥ δ
√

n√
Σ(n)

t




 .

(C.3.9)

Note that for all t ∈ [τ(K + m) + ε− t∗(µn), T − t∗(µn)], we have

Σ(n)
t > K + m + It+t∗(µn)(µn)− It∗(µn)(λ− µn)− 2It∗(µn)(µn). (C.3.10)
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Since Q̄t∗(µn)(µn) = 0 by definition of t∗, and Q̄t∗(µn)(µn) ≥ It∗(µn)(λ−µn) due to the structure
of the Skorokhod map, we conclude that (C.3.9) implies

Σ(n)
t > K + m + It+t∗(µn)(µn)− 2It∗(µn)(µn) ≥ K + m− It∗(µn)(µn). (C.3.11)

The last inequality and the fact that all µn are assumed to be admissible, and hence conform
to the upper bound m on the total amount of available service, give us Σ(n)

t > K. Therefore, all
the divisions by Σ(n)

t in (C.3.9) are allowed. On the other hand, since Σ(n)
t ≤ IT (λ) + m, we get

the following lower bound on the value in (C.3.11):

T − (τ(K + m) + ε)

−meas




t ∈ [τ(K + m) + ε− t∗(µn), T − t∗(µn)] : − Ŵ (n)
t√
Σ(n)

t

≥ δ
√

n√
IT (λ) + m




 .

We now invoke the notation and results of Corollary C.2.4, setting sn = δ
√

n/
√

IT (λ) + m

and fn to be the identity function for all n, and realizing that −Ŵ (n)/Σ(n) is a standard Brownian
motion. Due to the arbitrary choice of ε, the proof is finished since all the assumptions of
Corollary C.2.4 can be easily verified.

Albeit interesting in its own right, the previous lemma is stronger than what is needed at
present. The following corollary contains the exact result that will be referred to in the future.

Corollary C.3.4. For all admissible sequences {µn}, as n →∞,

E
[
meas

{
t ∈ [τ(K + m), T ] : Q̄t(µn) +

1√
n

Q̂t(µn) > K

}]
→ T − τ(K + m).

Proof. The claim follows immediately from Lemma C.3.3 and from boundedness between 0 and
T of random variables representing time spent above the threshold

meas
{

t ∈ [τ(K + m), T ] : Q̄t(µn) +
1√
n

Q̂t(µn) > K

}
.

Finally, we prove that, in the limit, the expected penalty incurred by the sequence {µ̂n}
matches the expectation of Ĵ∗.

Proposition C.3.5. Let Ĵ∗ be as in (3.3.6). Then for the sequence {µ̂n} defined by (3.3.7)

lim
n→∞

E[Ĵ (n)(µ̂n)− Ĵ∗] = 0.
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Proof. For typographical reasons, let us set τ− = τ((K + m)−) and τ+ = τ(K + m). Using
(3.3.8) and (3.3.9), we see that the performance measure sequence {Ĵ (n)}, evaluated at {µ̂n},
can be rewritten as

Ĵ (n)(µ̂n) = meas
{
t ∈ [0, τ (ηnK)) : W (It(λ)) >

√
n(K − It(λ))

}

+ meas
{
t ∈ [τ (ηnK) , τ (ηnK + m)) :W (2It(λ)− ηnK) >

√
n(1− ηn)K

}

+ meas{t ∈ [τ (ηnK + m) , τ− :W (It(λ) + m) >
√

n(K + m− It(λ))}
+ meas

{
t ∈ [τ−, τ+] : W (It(λ) + m) >

√
n(K + m− It(λ))

}

+ meas
{
t ∈ [τ+, T ] : W (It(λ) + m) >

√
n(K + m− It(λ))

}
.

(C.3.12)

It is best to focus on one term, i.e., one line of equation (C.3.12), at a time.

I. The first term in (C.3.12), namely,

meas
{
t ∈ [0, τ (ηnK)) : W (It(λ)) >

√
n(K − It(λ))

}
(C.3.13)

is evidently bounded from above by

meas
{
t ∈ [0, τ (ηnK)) : W (It(λ)) >

√
n(1− ηn)K

}
,

and even more so by

meas
{
t ∈ [0, T ] : W (It(λ)) >

√
n(1− ηn)K

}
. (C.3.14)

Let us take, using the nomenclature of Lemma C.2.5, sn =
√

n(1 − ηn)K, αn ≡ 0 and
fn = I(λ). By Assumption 3.3.4, the sequence {sn} is indeed divergent, and the other
assumptions of Lemma C.2.5 are trivially satisfied. Hence, the expectation of the random
variable in (C.3.14) disappears in the limit as n →∞. As the term in (C.3.14) is an upper
bound on the term in (C.3.13), this term’s expectation vanishes in the limit, as well.

II. The form of the second term allows us to use Lemma C.2.5 and Assumption 3.3.4 directly,
concluding that its expectation too vanishes in the limit.

III. This time we apply Lemma C.2.6 to show that the third term’s expectation converges to
zero, as well.

IV. This is the first term whose limit is not entirely trivial. For all t ∈ [τ ((K + m)−) , τ(K +
m)], we have that It(λ) = K + m, so that the fourth term in (C.3.12) can be rewritten as

meas {t ∈ [τ ((K + m)−) , τ(K + m)] : W (K + 2m) > 0}
= (τ(K + m)− τ ((K + m)−))1{W (K+2m)>0}.

Recognizing the result as a part of the random variable Ĵ∗, we leave it in the present form.
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V. By means of Corollary C.3.4, the final term converges in expectation to (T − τ(K + m)).

Trivial algebra wraps up the proof.

C.4 Asymptotic Optimality Analysis Miscellany

C.4.1 Absence of Regulation

Lemma 3.4.4 establishes a lower bound on the cost aggregated on the segment [τ(γnK + m), T ].
Next, we wish to estimate, for all n, the probability of 1

nQ(n)
t (µ̃n) ever exceeding the threshold

K before time τ(γnK + m).
For each n ∈ N, on the interval [0, τ(γnK)], the process X(n)(µ̃n) is non-negative, and

so we have Q(n)
t (µ̃n) = X(n)

t (µ̃n) on that segment. On the interval [τ(γnK), τ(γnK + m)],
the potential departure process N−(nI(µ̃n)) = N−(n(I(λ) − γnK)) and the arrival process
N+(nI(λ)) have the same instantaneous rates. Hence, conditionally on the behavior of the
system on [0, τ(γnK)], the netput process X(n)(µ̃n) is centered at N+(nγnK), as its increments
during the interval [τ(γnK), τ(γnK+m)] have mean zero. Moreover, the deviation of the random
variable 1

nQ(n)
τ(γnK)(µ̃n) from its mean γnK will vanish in the limit, in the strong sense.

Lemma C.4.1. As n tends to infinity,
∣∣∣∣
1
n

Q(n)
τ(γnK)(µ̃n)− γnK

∣∣∣∣ −→ 0, a.s.

Proof. For any n and t ≤ τ(γnK), by (3.1.1), we have

Q
(n)
t (µ̃n) = N+(nIt(λ)).

In particular, using the definition of τ in (3.2.7), we get

Q(n)
τ(γnK)(µ̃n) = N+(nIτ(γnK)(λ)) = N+(nγnK).

Therefore, for all n, we have
∣∣∣∣
1
n

Q(n)
τ(γnK)(µ̃n)− γnK

∣∣∣∣ =
∣∣∣∣
1
n

N+(nγnK)− γnK

∣∣∣∣ .

By the Strong Law of Large Numbers, the right-hand side tends to zero as n → ∞, almost
surely.

Lemma C.4.2. For every n ∈ N, the process {X(n)
t (µ̃n); τ(γnK) ≤ t ≤ τ(γnK + m)} is a

martingale. Moreover, E[X(n)
t (µ̃n)] = nγnK for every t ∈ [τ(γnK), τ(γnK + m)].
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Proof. Integrability of all the processes involved is trivially satisfied.
Let us temporarily fix the index n, and consider s ≤ t, both elements of [τ(γnK), τ(γnK+m)].

We have

E[X(n)
t (µ̃n) |X(n)

s (µ̃n)] = E[X(n)
t (µ̃n)−X(n)

s (µ̃n) |X(n)
s (µ̃n)] + X(n)

s (µ̃n).

Since N+ and N− are independent and, being Poisson processes, have independent increments
the above yields

E[X(n)
t (µ̃n) |X(n)

s (µ̃n)] = E[N+(nIt(λ))−N+(nIs(λ))]

− E[N−(nIt(µ̃n))−N−(nIs(µ̃n))] + X(n)
s (µ̃n).

Using the definition of µ̃n, we can rewrite the last equality as

E[X(n)
t (µ̃n) |X(n)

s (µ̃n)] = nIt(λ)− nIs(λ)− (nIt(λ)− nIs(λ)) + X(n)
s (µ̃n)

= X(n)
s (µ̃n).

Due to the martingality of the process X(n)(µ̃n), its expectation stays constant on the interval
[τ(γnK), τ(γnK + m)] and equal to

E[X(n)
τ(γnK)(µ̃n)] = E[N+(nIτ(γnK)(λ))] = nγnK.

Next, we provide an upper bound for the probability of 1
nX(n)(µ̃n) ever sinking to zero on

the segment [τ(γnK), τ(γnK + m)].

Proposition C.4.3. There exists a constant C > 0, such that for all n ∈ N,

P
[
inf
t

1
n

X(n)
t (µ̃n) ≤ 0

]
≤ C

n2γ4
n
, (C.4.1)

with the infimum taken across the segment [0, τ(γnK + m)].

Proof. From the definition of service disciplines µ̃n, we conclude that it suffices to consider the
supremum in (C.4.1) merely over [τ(γnK), τ(γnK + m)].

Let us temporarily fix the index n. For all t ∈ [τ(γnK), τ(γnK + m)], It(λ) ≤ γnK + m and
It(λ)− It(µ̃n) = γnK. Hence, using Lemma C.2.8, we arrive at the inequality

P
[
inf
t

1
n

X(n)
t (µ̃n) ≤ 0

]
= P

[
inf
t

1
n

[N+(nIt(λ)) −N−(nIt(µ̃n))] ≤ 0
]

≤ 8
n4γ4

nK4
[3n2((γnK + m)2 + m2) + n(γnK + 2m)]

≤ 8
n2γ4

nK4
[3((K + m)2 + m2) + (K + 2m)].

Taking C = 8
K4 [3((K + m)2 + m2) + (K + 2m)] completes the proof.
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The next corollary is the final claim establishing absence of reflection under Assumption
3.4.5(i).

Corollary C.4.4. Let the sequence {γn} be such that
∞∑

n=1

1
n2γ4

n
< ∞. Then

P
[
inf
t

1
n

X
(n)
t (µ̃n) ≤ 0, i.o.

]
= 0,

with the infimum taken over [τ(γnK), τ(γnK + m)]. In other words, 1
nX(n)

t (µ̃n) > 0 and, there-
fore, 1

nX(n)
t (µ̃n) = 1

nQ(n)
t (µ̃n), for all t ∈ [0, T ], for all but finitely many n, almost surely.

Proof. By the assumption, we have that

∞∑

n=1

P
[
inf
t

1
n

X(n)
t (µ̃n) ≤ 0

]
≤ C

∞∑

n=1

1
n2γ4

n
< ∞.

The corollary is then a straightforward consequence of the Borel-Cantelli Lemma.

C.4.2 Absence of Penalty

Lemma C.4.5. Let the sequence {γn} satisfy Assumption 3.4.5, and take the constant C to be
defined by

C =
8

K4
[3((K + m)2 + m2) + (K + 2m)].

Then, for all n ∈ N, the inequality

P
[
sup

t

1
n

Q(n)
t (µ̃n) > K

]
≤ P

[
sup

t

1
n

X(n)
t (µ̃n) > K

]
+ C

1
n2γ4

n
(C.4.2)

holds, with the suprema taken over the segment [τ(γnK), τ(γnK + m)].

Proof. To simplify the exposition of this proof, we first introduce the following random variables

Q(n)
∗ = sup{ 1

n
Q(n)

t (µ̃n) : τ(γnK) ≤ t ≤ τ(γnK + m))},

X(n)
∗ = sup{ 1

n
X(n)

t (µ̃n) : 0 ≤ t ≤ τ(γnK + m))}, for every n ∈ N.

With this notation the desired inequality (C.4.2) is transformed into

P
[
Q(n)

∗ > K
]
≤ P

[
X(n)

∗ > K
]

+ C
1

n2γ4
n
. (C.4.3)
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By the definition of the one-sided regulator map, in the event that X(n)
∗ > 0, we necessarily

have X(n)
∗ = Q(n)

∗ . Hence,

P[X(n)
∗ 4= Q

(n)
∗ ] ≤ P[X(n)

∗ ≤ 0], for all n.

Combined with the fact that {γn} must satisfy Assumption 3.4.5, and the claim of Proposi-
tion C.4.3, the last display implies that

P[X(n)
∗ 4= Q

(n)
∗ ] ≤ C

1
n2γ4

n
for all n. (C.4.4)

Now we proceed to expand the left-hand side of (C.4.3) as

P
[
Q(n)

∗ > K
]

= P
[
Q(n)

∗ > K, X(n)
∗ = Q(n)

∗

]
+ P

[
Q(n)

∗ > K, X(n)
∗ 4= Q(n)

∗

]

≤ P
[
X(n)

∗ > K, X(n)
∗ = Q(n)

∗

]
+ P

[
X(n)

∗ 4= Q(n)
∗

]
.

Using (C.4.4), we get

P
[
Q(n)

∗ > K
]
≤ P

[
X(n)

∗ > K
]

+ C
1

n2γ4
n
.

Proposition C.4.6. Let the sequence {γn} satisfy Assumption 3.4.5, and take the constant C

to be defined as

C =
8

K4
[3((K + m)2 + m2) + (K + 2m)].

Then, for all n ∈ N, the inequality

P
[
sup

t

1
n

X(n)
t (µ̃n) > K

]
≤ C

1
n2(1− γn)4

(C.4.5)

holds, with the supremum taken over the segment [τ(γnK), τ(γnK + m)].

Proof. The proof mimics the steps of the proof of Proposition C.4.3. For all n, we can rewrite
the left-hand side of (C.4.5) and rearrange the terms in the obtained expression to get

P
[
sup

t

1
n

X(n)
t (µ̃n) > K

]

= P
[
sup

t

1
n

X(n)
t (µ̃n)− γnK > K − γnK

]

= P
[
sup

t

(
1
n

[N+(nIt(λ))−N−(nIt(µ̃n))] − γnK

)4

> (1− γn)4K4

]
.
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Combining Lemmas C.2.9 and C.4.2 with the above inequality, we obtain

P
[
sup

t

1
n

X(n)
t (µ̃n) > K

]
≤

E[(nγnK −X(n)
τ(γnK+m)(µ̃n))4]

n4(1− γn)4K4
. (C.4.6)

Now, we do some simple algebra. The compensated netput process at time τ(γnK + m) can
be expanded as

X(n)
τ(γnK+m)(µ̃n)− nγnK = (N+(nγnK + nm)− nγnK − nm)− (N−(nm)− nm).

The fourth centered moments of the number of arrivals and potential number of departures
are evaluated using Lemma C.2.7 and then bounded from above. We obtain

E[(N+(nγnK + nm)− nγnK − nm)4] = 3n2(γnK + m)2 + n(γnK + m)

≤ 3n2[(K + m)2 + (K + m)],
(C.4.7)

and

E[(N−(nm)− nm)4] = 3n2m2 + nm ≤ 3n2[m2 + m]. (C.4.8)

Now we use Lemma D.5.1 and inequalities in (C.4.7) and (C.4.8) to obtain the following
upper bound for the expression in (C.4.6):

P
[
sup

t

1
n

X(n)
t (µ̃n) > K

]
≤ C

1
n2(1− γn)4

. (C.4.9)

This is exactly the claim we are proving.

We combine the last two results to get the following proposition.

Proposition C.4.7. Let the sequence {γn} satisfy Assumption 3.4.5, and let the constant C be
defined by

C =
8

K4
[3((K + m)2 + m2) + (K + 2m)].

Then, for all n ∈ N, the inequality

P
[
sup

t

1
n

Q(n)
t (µ̃n) > K

]
≤ C

[
1

n2(1− γn)4
+

1
n2γ4

n

]
(C.4.10)

holds, with the supremum taken over the segment [τ(γnK), τ(γnK + m)].

Proof. The claim is a straightforward consequence of Lemma C.4.5 and Proposition C.4.6.
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C.4.3 A Special case

Lemma C.4.8. Let us assume that there exists a neighborhood I of τ(K + m) such that λt > 0
for all t ∈ I. Then

τ (n)
∗ → τ(K + m), a.s., as n →∞.

Proof. According to Theorem 9.6.1 in [Whi02a], we have that

1
n

N+(nI(λ)) → I(λ), a.s., (C.4.11)

uniformly on compacts. Let us recall the definition (3.4.3) of the processes τ (n). They are given
as (right-continuous) inverses of the normalized arrival processes that appear on the left-hand
side in (C.4.11). Using Theorem 13.6.3 in [Whi02b], we conclude that necessarily τ (n) → τ,

almost surely in M1−topology.
In fact, more is true on the interval I under the assumption of positivity of λ. In this case,

the function I(λ) is strictly increasing on I, and so τ becomes the proper inverse of I(λ) and is
continuous on the restricted domain I (as opposed to being merely a right-continuous inverse).
This holds by Lemma 13.6.5 in [Whi02b]. This fact implies that the almost sure convergence of
the sequence of random processes τ (n) defined in (3.4.3) towards τ is uniform on this domain
(see p.82 in [Whi02b]).

By the Strong Law of Large Numbers, we have

1
n

N−(nm) → m, a.s. (C.4.12)

So for all n, we see that

|τ (n)
∗ − τ(K + m)| =

∣∣∣∣τ
(n)

(
K +

1
n

N−(nm)
)
− τ(K + m)

∣∣∣∣

≤
∣∣∣∣τ

(n)

(
K +

1
n

N−(nm)
)
− τ

(
K +

1
n

N−(nm)
)∣∣∣∣

+
∣∣∣∣τ
(

K +
1
n

N−(nm)
)
− τ(K + m)

∣∣∣∣ .

(C.4.13)

For large enough n, we have that K + 1
nN−(nm) ∈ I . Hence, the first term on the right-

hand side of (C.4.13) vanishes in the limit since τ (n) → τ uniformly on I, and the argument
K + 1

nN−(nm) is eventually in I. The second term on the right-hand side of (C.4.13) disappears
in the limit due to the continuity of τ on I and the convergence in (C.4.12).

When combined with Theorem 3.4.8, the last lemma yields the following result.
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Corollary C.4.9. Assume that there exists a neighborhood I of τ(K + m) such that λt > 0 for
all t ∈ I. Then we have

J (n)(µ̃n) → J∗, a.s., as n →∞,

where J∗ is the optimal value of the performance measure J̄ from the fluid limit analysis, and
is defined in (3.2.8).

C.5 Comparison of Classes

The first subsection is a necessary disclaimer regarding the nature of comparison between asymp-
totically optimal and second order optimal sequences.

C.5.1 Asymptotically Optimal vs. Second Order Optimal

It is not surprising that the class of sequences we obtained as second order optimal in the sense
of Definition 3.2.2 is similar to the class of disciplines that we obtained as asymptotically optimal
in the Section 3.4. Comparing Assumptions 3.3.4 and 3.4.5, it is obvious that the conditions of
Assumption 3.3.4 are more relaxed that the ones of Assumption 3.4.5. In other words, the class
of asymptotically optimal sequences is a subset of the class of second order optimal sequences
of service disciplines. Before we explore their relationship further, we should be careful and
state that unfortunately in both cases the conditions are merely sufficient for optimality. It
would make more sense to be comparing the classes of optimal sequences of service disciplines
were they completely described, i.e., had a criterion both necessary and sufficient been provided.
However, in view of the natural construction of both classes, let us continue.

Now that the most obvious drawback has been pointed out, the next section is dedicated to
the discrepancy between Definitions 3.3.1 and 3.4.2.

C.5.2 “Almost Surely” vs. “in Expectation”

It would not be difficult to argue that an almost sure result in a control problem is preferable
to a result given in expectation. If we accept the sequence of uniformly accelerated systems
as a reasonable tool for grasping the actual system, an almost surely asymptotically optimal
discipline simply means that no matter what the state of the world, our control is optimal in a
pathwise sense. A result in expectation, on the other hand, includes a possibility of a certain
state of the world working extremely against us. In other words, our performance may be
suboptimal.

Let us recall that the asymptotic expansion in (2.2.4) holds merely in the distributional sense.
Hence, the requirement in Definition 3.3.1 for second order optimal sequences to outperform any
other deterministic admissible sequence in expectation is indeed a sensible one. Also, due to the
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nature of the paths of Brownian motion (they do not have monotone stretches), all chances of
stochastic comparison between paths of the approximating processes Q̄(µ) + 1√

n
Q̂(µ), as the

service discipline µ is varied, is lost. On the other hand, the non-homogenous Poisson processes
in the prelimit systems Q(n)(µ) could be compared for different service disciplines µ. This
allowed us to require asymptotic optimality in the almost sure sense, as stated in Definition
3.4.2.

In order to make the comparison of optimal sequences in the asymptotic and the second
order sense more reasonable, let us introduce the following, more relaxed, notion of asymptotic
optimality.

Definition C.5.1. An admissible sequence {µ∗
n} will be called weakly asymptotically optimal

for the sequence of performance measures {J (n)} given in (4.3.2), if

lim inf
n→∞

E[J (n)(µn)− J (n)(µ∗
n)] ≥ 0,

for any other admissible sequence {µn}.

Obviously, an analogue of Lemma 3.3.2 holds, so let us determine a suitable constant J∗,

such that

lim inf
n→∞

E[J (n)(µn)− J∗] ≥ 0,

for any sequence {µn} of admissible service disciplines. Let J∗ = Ĵ∗, as introduced in (3.3.6).
Then the following lemma holds true.

Lemma C.5.2. For all admissible sequences {µn},

lim inf
n→∞

E[J (n)(µn)− J∗] ≥ 0.

Proof. For any n, and any choice of µn, by Fubini’s theorem,

E[J (n)(µn)] =
T∫

0

P
[

1
n

Q(n)
t (µn) > K

]
dt ≥

T∫

τ((K+m)−)

P
[

1
n

Q(n)
t (µn) > K

]
dt. (C.5.1)

For all t, using the monotonicity of Poisson processes, we have
1
n

Q(n)
t (µn) ≥ 1

n
X(n)

t (µn) =
1
n

[N+(nIt(λ)) −N−(nIt(µn))]

≥ 1
n

[N+(nIt(λ)) −N−(nm)].
(C.5.2)

Let us fix a time t, such that It(λ) = K + m. Then

P
[

1
n

Q(n)
t (µn) > K

]
≥ P

[
1
n

[N+(n(K + m))−N−(nm)] > K

]

= P
[√

n

(
1
n

N+(n(K + m))− (K + m)
)
−
√

n

(
1
n

N−(nm)−m

)]
> 0].
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By the Central Limit Theorem and independence of N+ and N−, this probability converges to
1
2 .

On the other hand, for all t > τ(K + m), by the Strong Law of Large Numbers, the right-
hand side of (C.5.2) converges almost surely towards It(λ)−m > K. Therefore, as n →∞, for
any fixed t > τ(K + m),

P
[

1
n

Q(n)
t (µn) > K

]
→ 1.

Performing the integration indicated in (C.5.1) completes the proof.

Next, let us verify that the class of admissible sequences of service disciplines defined by

µ̂n = λ1[τ(ηnK),τ(ηnK+m)], (C.5.3)

for sequences {ηn} satisfying

n(1− ηn)2 −→∞, as n →∞, (C.5.4)

are not only second-order optimal, but also weakly asymptotically optimal in the sense of Defi-
nition C.5.1, provided that we additionally assume

∞∑

n=1

1
n2η4

n
< ∞. (C.5.5)

The assumption (C.5.5) is in place to ensure (asymptotical) absence of reflection, and assumption
(C.5.4) allows the system to (asymptotically) avoid unnecessary transitions over the threshold.
We have already encountered assumption (C.5.5), with somewhat different notation, as part of
Assumption 3.4.5.

Lemma C.5.3. Let {ηn} satisfy assumptions (C.5.4) and (C.5.5). Define the admissible se-
quence {µ̂n} as in (3.3.7). Then, the following claims hold true:

(i) for all t such that It(λ) = K + m,

P
[ 1
n

Q(n)
t (µ̂n) > K

]
→ 1

2
, as n →∞;

(ii) for all t such that It(λ) < K + m,

P
[

1
n

Q
(n)
t (µ̂n) > K

]
→ 0, as n →∞. (C.5.6)
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Proof. We prove the proposed statements one at a time.
Statement (i). Let us temporarily fix an instant t such that It(λ) = K + m. For all n, from

the definition of µ̂n, we conclude that It(µ̂n) = m. Therefore, the claim

1
n

X(n)
t (µ̂n) > K (C.5.7)

is equivalent to

√
n

(
1
n

N+(n(K + m))− (K + m)
)
−
√

n

(
1
n

N−(nm)−m

)
> 0. (C.5.8)

By the Central Limit Theorem, the random variable on the left-hand side of (C.5.8) converges
to a normally distributed random variable centered at zero. Hence, we get

P
[√

n

(
1
n

N+(n(K + m))− (K + m)
)

>
√

n

(
1
n

N−(nm)−m

)]
→ 1

2
.

Using the equivalence of (C.5.7) and (C.5.8), we conclude that

lim
n→∞

P
[

1
n

X(n)
t (µ̂n) > K

]
=

1
2
. (C.5.9)

Assumption (C.5.5) and Corollary C.4.4 imply that

P[X(n)
t (µ̂n) = Q

(n)
t (µ̂n), ev.] = 1. (C.5.10)

Using Lemma C.2.2 along with conditions (C.5.9) and (C.5.10), we verify the claim of the
lemma.

Statement (ii). Let {ηnk}k be an arbitrary subsequence of the sequence {ηn}. Since all the
elements of {ηnk}k are bounded between 0 and 1, this subsequence has a further subsequence
{ηnkl

}l which is convergent. For typographical convenience, let us denote this subsequence by
{νl} and call its limit ν. Moreover, we define the sequence of natural numbers {cl} by cl = nkl

,
for all indices l. Assumption (C.5.4) implies that

cl(1− νl)2 →∞, as l →∞. (C.5.11)

The sequence {νl} through the definition in (3.3.7) generates a sequence of service disciplines
{µ̂cl}l. The corresponding sequence of cumulative services in the system is then given by

I(µ̂cl) = (I(λ)− νlK)+ ∧m. (C.5.12)

The sequence of functions in (C.5.12) has as its uniform limit (I(λ)− νK)+ ∧m.
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Now, for any fixed instant t satisfying It(λ) < K + m, the Strong Law of Large Numbers
implies that

1
cl

X(cl)
t (µ̂cl) → x̄t := It(λ)− (It(λ)− νK)+ ∧m. (C.5.13)

The value on the right-hand side of (C.5.13) can be written more conveniently as

x̄t =






It(λ) for t < τ(ηK)

ηK for τ(ηK) ≤ t < τ(ηK + m)

It(λ)−m for τ(ηK + m) ≤ t < τ((K + m)−).

(C.5.14)

There are two cases that need to be considered separately here, depending on the value of ν.

Case 1. Let ν < 1. Then for all t < τ((K + m)−), i.e., for all t such that It(λ) < K + m, we
have x̄t < K. Using the Portmanteau Theorem, we conclude that

P
[

1
cl

X
(cl)
t (µ̂cl) > K

]
→ P[x̄t > K] = 0, as l →∞. (C.5.15)

Using Lemma C.2.2 and claims (C.5.10) and (C.5.15), we get

P
[

1
cl

Q(cl)
t (µ̂cl) > K

]
→ 0, as l →∞.

Case 2. In this case ν = 1. So, νl ↑ ν, as l → ∞. Recalling the definition (3.2.7) of the
mapping τ , we conclude that τ(νl) → τ(K−), as l →∞.

For any t < τ(K−), the description of x̄t given in (C.5.14) yields that x̄t < K. Hence, the
Portmanteau theorem is applicable to get

P
[

1
cl

X
(cl)
t (µ̂cl) > K

]
→ P[x̄t > K] = 0, as l →∞. (C.5.16)

In the exact same fashion as in the first case we conclude that

P
[

1
cl

Q
(cl)
t (µ̂cl) > K

]
→ 0, as l →∞.

To the contrary, for all t ∈ [τ(K−), τ((K + m)−)] we have x̄t = K, which renders the
Portmanteau theorem inapplicable if we wish to reach a conclusion similar to the one in (C.5.16).
However, we can proceed by noting that, for any l, simple algebra gives us

P
[

1
cl

X(cl)
t (µ̂cl) > K

]

= P
[
√

cl

(
1
cl

X(cl)
t (µ̂cl)− (It(λ)− It(µ̂cl))

)
>
√

cl(K − (It(λ)− It(µ̂cl)))
]

.
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By the equality in (C.5.12), the last expression yields

P
[

1
cl

X(cl)
t (µ̂cl) > K

]
= P

[
√

cl

(
1
cl

X(cl)
t (µ̂cl)− (It(λ)− It(µ̂cl))

)
>
√

cl(1− νl)K
]

. (C.5.17)

The Central Limit Theorem implies that

√
cl

(
1
cl

X
(cl)
t (µ̂cl)− (It(λ)− It(µ̂cl))

)
⇒ N(0,Σt), as l →∞, (C.5.18)

where Σt denotes the variance of the limiting normal distribution whose exact value is irrelevant
for our purposes. Of course, this random variable almost surely attains finite values. Therefore,
looking at (C.5.11), we realize that (C.5.17) and (C.5.18) together imply

P
[

1
cl

X
(cl)
t (µ̂cl) > K

]
→ P[x̄t > K] = 0, as l →∞.

So that, again, we have

P
[

1
cl

Q
(cl)
t (µ̂cl) > K

]
→ 0, as l →∞.

We have just proven that for any subsequence of the sequence of numbers P[ 1
nQ(n)

t (µ̂n) > K]
there exists a further convergent subsequence. Moreover, all of these subsubsequences converge to
the same limit, namely, zero. It is a well known result that then the sequence P[ 1

nQ(n)
t (µ̂n) > K]

itself must converge, and to the same limit. This completes the proof of claim (C.5.6).



Appendix D

The Tandem System - Auxiliary
Results

D.1 Transition Probabilities

For the purposes of this section we extend the existing notation by introducing the functional
I∞ given as I∞(f) =

∫∞
0 f(s) ds for every integrable function f : [0,∞) → R.

Lemma D.1.1. Suppose that Y1 and Y2 are two independent unit Poisson processes on a com-
mon probability space. Let ρ1 : [0,∞) → (0,∞) and ρ2 : [0,∞) → [0,∞) be integrable functions
such that I∞(ρ2) > 0.

We define the stopping times σ1 and σ2 denoting the first jumps in the two time-changed
Poisson processes as

σ1 = inf{t ∈ [0,∞) : Y1(It(ρ1)) > 0},
σ2 = inf{t ∈ [0,∞) : Y2(It(ρ2)) > 0}.

Then we have

P[σ1 < σ2] =
∫ ∞

0

(
1− e−Is(ρ1)

)
ρ2(s)e−Is(ρ2)ds.

Proof. In order to compute the probability of interest, we begin by identifying the distribution
function of the stopping times σ1 and σ2, denoted by Fσ1 and Fσ2 , respectively. The stopping
times are independent due to the independence of Y1 and Y2, so their distribution functions will
uniquely determine the joint distribution function of the pair (σ1,σ2).

For any positive real number s, we have

1− Fσ1(s) = P[σ1 > s] = P[Y1(Is(ρ1)) = 0] = e−Is(ρ1).

Analogously, Fσ2(s) = 1− e−Is(ρ2).

145
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The rest is a simple computation yielding

P[σ1 < σ2] =
∫ ∞

0
(1− e−Is(ρ1))ρ2(s)e−Is(ρ2)ds.

Remark D.1.1. One should note that the essential ingredient for the above proof is the fact
that the given rates are not identically zero which prevents the trivial case of stopping times
concentrating at the “graveyard” state of ∞.

The following corollary gives us the limiting result upon acceleration of the system from the
previous lemma. Note that the rate of acceleration of ρ1 is much larger than the one for ρ2.

Corollary D.1.2. Suppose that ρ2 : R+ → R+ is an integrable function such that I∞(ρ2) > 0
and define a sequence of rate functions ρ(n)

1 ≡ ρ2g(n)/n, where g : N → (0,∞) is such that
g(n)

n →∞ as n →∞. We set the following two sequences of stopping times

σ(n)
1 = inf{t ∈ [0,∞) : Y1(nIt(ρ

(n)
1 )) > 0},

σ(n)
2 = inf{t ∈ [0,∞) : Y2(nIt(ρ2)) > 0}.

Then for every n, we have

P[σ(n)
1 < σ(n)

2 ] = 1− e−nI∞(ρ2) − 1

1 + g(n)
n

(1− e−(n+g(n))I∞(ρ2)),

where I∞(ρ2) =
∫∞
0 ρ2(s) ds. Moreover, as n →∞

P[σ(n)
1 < σ

(n)
2 ] −→ 1.

Proof. According to the previous lemma, for all n

P[σ(n)
1 < σ(n)

2 ] = n

∫ ∞

0
(1− e−nIs(ρ

(n)
1 ))ρ2(s)e−nIs(ρ2) ds

= n

∫ ∞

0
(1− e−g(n)Is(ρ2))ρ2(s)e−nIs(ρ2) ds

= n

[∫ ∞

0
ρ2(s)e−nIs(ρ2) ds−

∫ ∞

0
ρ2(s)e−(n+g(n))Is(ρ2) ds

]
.

Evaluating the integrals in the last display, we obtain

P[σ(n)
1 < σ(n)

2 ] = n

[
1
n

(1− e−nI∞(ρ2))− 1
n + g(n)

(1− e−(n+g(n))I∞(ρ2))
]

= 1− e−nI∞(ρ2) − 1

1 + g(n)
n

(1− e−(n+g(n))I∞(ρ2)).

The right-hand side converges to 1, by the given assumption on the growth of g.
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Let us introduce a sequence {κn} of positive integers. The next question we wish to answer
is the one concerning the limiting behavior of the probabilities established above, but this time
with an independent κn-tuple of systems from the previous corollary.

Corollary D.1.3. Let us assume that for every n, we have a family of κn pairs of independent
driving unit Poisson processes which are denoted by Y (i)

1 and Y (i)
2 for i ≤ κn and accommodated

on a common probability space. Moreover, for every n and i, we define the random variables

σ(n, i)
1 = inf{t ∈ [0,∞) : Y (i)

1 (nIt(ρ
(n, i)
1 )) > 0},

σ(n, i)
2 = inf{t ∈ [0,∞) : Y (i)

2 (nIt(ρ
(n, i)
2 )) > 0},

where ρ(n, i)
1 = ρ(n, i)

2 g(n)/n and ρ(n,i)
2 ∈ L1

+[0, T ] are such that I∞(ρ(n,i)
2 ) > ε for every pair of

indices (n, i) and some positive constant ε. We further assume that

κn ln
(

g(n)
g(n) + n

)
→ 0 as n →∞ (D.1.1)

and

κne−nε → 0 as n →∞. (D.1.2)

Then, as n →∞,

P[∀i ≤ κn : σ(n, i)
1 < σ(n, i)

2 ] −→ 1.

Proof. Since for all n, the κn systems are assumed to be driven by independent random processes,
we have

P[∀i ≤ κn : σ(n, i)
1 < σ(n, i)

2 ] =
∏

i≤κn

P[σ(n, i)
1 < σ(n, i)

2 ].

Due to the continuity of the logarithmic function, the claim of the corollary is now equivalent
to

κn∑

i=1

ln(P[σ(n, i)
1 < σ

(n, i)
2 ]) −→ 0, as n →∞.

For every n, using Corollary D.1.2, we get the following expansion of the sum in the above
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display
κn∑

i=1

ln(P[σ(n, i)
1 < σ(n, i)

2 ]) =
∑

i≤κn

ln
(

1− e−nI∞(ρ(n, i)
2 ) − n

n + g(n)

(
1− e−(n+g(n))I∞(ρ(n, i)

2 )
))

=
∑

i≤κn

ln
(

g(n)
n + g(n)

− e−nI∞(ρ(n, i)
2 )

(
1− e−g(n)I∞(ρ(n, i)

2 )
))

≥
∑

i≤κn

ln
(

g(n)
n + g(n)

− e−nI∞(ρ(n, i)
2 )

)

≥
∑

i≤κn

ln
(

g(n)
n + g(n)

− e−nε

)

= κn ln
(

g(n)
n + g(n)

− e−nε

)
.

(D.1.3)

Due to the concavity of the logarithmic function, the following inequality holds true

κn ln
(

g(n)
n + g(n)

− e−nε

)
≥ κn ln

(
g(n)

n + g(n)

)
− κn

e−nε

g(n)
n+g(n) − e−nε

.

Straight from assumptions (D.1.1) and (D.1.2), the left-hand side above vanishes as n →∞.

Example D.1.4. The conditions on the growth of the functions κn and g(n) enforced in the
previous corollary require to be explained further, as well as given in a more tractable form.

Let us assume that a divergent sequence {κn} is given by κn = 2n1+ε3, for all n, so that
κne−nε → 0 is automatically satisfied for any ε > 0. Then, define g so that it satisfies g(n)

n →∞
as n →∞ in the following way:

g(n) = n
e−

1
n1+2ε

1− e
− 1

κnn1+2ε

,

for the constant ε > 0 from the corollary. It can be easily verified that κn ln( g(n)
g(n)+n ) → 0.

D.2 Some Useful Integrals

Let f denote an integrable function on [0, T ], and let its integral be denoted by F = I(f). We
assume that F is a nonnegative function. Furthermore, let c be a positive constant. We want
to evaluate the following three integrals for every t ∈ [0, T ]:

1.
∫ t
0 fs1{Fs<c} ds;

2.
∫ t
0 fs1{Fs>c} ds;
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3.
∫ t
0 fs1{Fs=c} ds.

Let us dedicate our attention to one integral at the time.
Integral 1. Since F is given as an integral, it is necessarily a continuous function. Therefore,

the set A = {s ∈ [0, T ] : Fs < c} is an open subset of [0, T ]. Moreover, since [0, T ] can be viewed
as a subspace of R, it is necessary that there exists an open set O in R such that A = O∩ [0, T ].
Every open set on the real line can be expressed as a countable union of disjoint open intervals.
In particular, this means that there exists a sequence of mutually disjoint intervals {(αi,βi)}
such that O = ∪i∈N(αi,βi). Since F0 = 0, we have that 0 ∈ A. Therefore, without loss of
generality we can assume that α1 and β1 are such that α1 < 0 < β1. Also, the set A can now be
displayed as A = ([0,β1) ∪ ∪i≥2(αi,βi)) ∩ [0, T ].

Another consequence of the continuity of F is that for all i > 1 such that βi ≤ T , we have
Fαi = Fβi = c, and if αi ≤ T and βi > T , then Fαi = c (there can be at most one of the latter
i’s, since the intervals are assumed to be disjoint).

Now, the integral in question can be rewritten as follows:
∫ t

0
fs1{Fs<c} ds =

∫ t

0
fs1A ds

=
∫ β1

0
fs ds +

∫ t

0
fs

∑

i≥2

1(αi,βi)(s) ds

= c +
∫ t

0
fs lim

N→∞

N∑

i=2

1(αi,βi)(s) ds.

(D.2.1)

So, by the Lebesgue’s Dominated Convergence Theorem, we obtain

∫ t

0
fs1{Fs<c} ds = c + lim

N→∞

∫ t

0
fs

N∑

i=2

1(αi,βi)(s) ds. (D.2.2)

For every index N , Fubini’s theorem (or its simple form - the additivity of the integral) allows
us to transform the integral on the right-hand side of the last display by interchanging the order
of summation and integration. We obtain the following.

∫ t

0
fs

N∑

i=2

1(αi,βi)(s) ds =
N∑

i=2

∫ t

0
fs1(αi,βi)(s) ds =

N∑

i=2

∫ βi∧t

αi∧t
fs ds =

N∑

i=2

(Fβi∧t − Fαi∧t).

For all i ∈ N such that βi ≤ t, the term in the above summation vanishes. The same happens for
all i such that αi ≥ t. By the disjointness assumption imposed on the sequence of open intervals
at hand, there can be at most one index, say i∗, such that t ∈ (αi∗ ,βi∗), and this is only the
case if Ft < c.
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Combining this conclusion with the expression (D.2.2), we obtain

∫ t

0
fs1{Fs<c} ds =

{
c + (Ft − c) if Ft < c

c if Ft ≥ c

= Ft ∧ c.

(D.2.3)

Integral 2. One can quite effortlessly retrace the steps in the calculation for the previous
case. The result is the following:

∫ t

0
fs1{Fs>c} ds = (Ft − c)+. (D.2.4)

Integral 3. Here we will simply combine the results of the above two calculations to obtain:
∫ t

0
fs1{Fs=c} ds =

∫ t

0
fs ds −

∫ t

0
fs1{Fs<c} ds−

∫ t

0
fs1{Fs=c} ds

= Ft − Ft ∧ c− (Ft − c)+

=

{
Ft − Ft if Ft < c

Ft − c− Ft + c if Ft ≥ c

= 0.

(D.2.5)

D.3 A Special Version of the Functional Central Limit Theorem

and Some Consequences

In Subsection 4.6.1 (see Lemma 4.6.5), we showed that the sequence of normalized queues
{Q(P,n)} in the pooled system (as defined in (4.6.3)) converges almost surely, uniformly to the
process Q̄P defined in (4.4.2). This result addresses the first-order approximation of the pooled
queue length process. We now focus on their second-order approximations. Let us start with
the following general auxiliary result.

Lemma D.3.1. Suppose Ñ+ and Ñ− are independent unit Poisson processes observed on [0, T ]
and let {Λ+

n } and {Λ−
n } be sequences in A+ such that there exist Λ+ and Λ− in A+ satisfying

√
n(Λ+

n − Λ+) → 0,
√

n(Λ−
n − Λ−) → 0,

(D.3.1)

as n →∞, in the uniform topology. Moreover, let X̄ = Λ+ − Λ− and let

X̂n =
√

n

(
1
n

Xn − X̄

)
, for all n, (D.3.2)
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where Xn = N+(Λ+
n )−N−(Λ−

n ) for all n. Then

X̂n ⇒ X̂, as n →∞, (D.3.3)

in the uniform topology, where X̂
(d)
= W (Λ+ + Λ−) for W a standard Brownian motion.

Proof. A combination of Theorem 14.6 and the lemma on p. 151 in [Bil99] with the continuity
of addition in the uniform topology yields

√
n

(
1
n

Xn − (Λ+
n − Λ−

n )
)
⇒ X̂,

uniformly. Invoking assumption (D.3.1) and Theorem 3.9 of [Bil99], we complete the proof.

The next lemma is dedicated to the queue lengths generated by the netput processes from
the previous one.

Lemma D.3.2. In addition to all the assumptions and the notation from Lemma D.3.1, we set
Q̂n =

√
n( 1

nQn − Q̄), where

Qn = Γ(Xn) (D.3.4)

and

Q̄ = Γ(X̄). (D.3.5)

Then as n →∞

Q̂n
t ⇒ Q̂t, for every t ∈ [0, T ], (D.3.6)

where

Q̂t = X̂t + sup
s∈Φ−X̄(t)

[−X̂s]

with

Φ−X̄(t) = {s ≤ t : −X̄s = sup
u≤t

[−X̄u]}.

Proof. We start by using the Skorokhod representation theorem (see, e.g., Theorem 6.7. in
[Bil99]) to accommodate all the processes involved on a common probability space so that the
convergence in (D.3.3) holds in the almost sure sense.

For every n, the process whose limit we look at in (D.3.6) by definition equals

Q̂n =
√

n

(
1
n

Qn − Q̄

)
.
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Using the defining equalities (D.3.4) and (D.3.5) and the homogeneity of the one-sided reflection
map, we transform the last expression into

Q̂n =
√

n

(
Γ
(

1
n

Xn

)
− Γ(X̄)

)
.

From (D.3.2) we obtain that 1
nXn = X̄ + 1√

n
X̂n. Inserting this result into the last display, we

get

Q̂n =
√

n

(
Γ
(

X̄ +
1√
n

X̂n

)
− Γ(X̄)

)
. (D.3.7)

By Lemma 13.5.1 of [Whi02b], the mapping Γ is Lipschitz continuous in the uniform metric on
D with the Lipschitz constant 2. Thus, we have that

√
n

∥∥∥∥Γ
(

X̄ +
1√
n

X̂n

)
− Γ

(
X̄ +

1√
n

X̂

)∥∥∥∥ ≤ 2
√

n

∥∥∥∥X̄ +
1√
n

X̂n −
(

X̄ +
1√
n

X̂

)∥∥∥∥

= 2‖X̂n − X̂‖.

Due to Lemma D.3.1 the right-hand side in the above display perishes in the limit in the almost
sure sense on the newly constructed probability space created for the purpose of this proof by
means of the Skorokhod representation theorem. In particular, for every t ∈ [0, T ], we have

√
n

∣∣∣∣Γ
(

X̄ +
1√
n

X̂n

)

t

− Γ
(

X̄ +
1√
n

X̂

)

t

∣∣∣∣→ 0, as n →∞, (D.3.8)

with probability 1. On the other hand, by Theorem 9.5.1 of [Whi02b], we have that for every
t ∈ [0, T ]

√
n

(
Γ
(

X̄ +
1√
n

X̂

)

t

− Γ(X̄)t
)
→ Q̂t, a.s., (D.3.9)

on the new probability space. Combining the limits (D.3.8) and (D.3.9) through the equality
(D.3.7), we get the desired result.

We intend to employ the last result through the following corollary.

Corollary D.3.3. Define the sequence of processes Q̂(P,n) =
√

n( 1
nQ(P,n) − Q̄P ). Then the

following convergence in distribution holds true for every t ∈ [0, T ]:

Q̂(P,n)
t ⇒ Q̂P

t , (D.3.10)

where

Q̂P
t = X̂P

t + sup
s∈Φ−X̄P (t)

[−X̂P
s ] (D.3.11)
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with

Φ−X̄P (t) = {s ≤ t : −X̄P
s = sup

u≤t
[−X̄P

u ]}

while X̄P = I(λ− µ2) and X̂P (d)
= W (I(λ + µ2)) for W a standard Brownian motion.

Before exhibiting the last result of this section, we digress briefly to establish the following
general lemma.

Lemma D.3.4. If the random variable X is normally distributed and Y is another random
variable on the same probability space and independent from X, then P[X + Y = α] = 0, for
every real α.

Proof. This is a matter of simple computation in which we denote the characteristic functions
of X, Y and X + Y by φX , φY and φX+Y , respectively. By independence of X and Y , we have
that φX+Y = φXφY . Therefore, for every real ξ,

|φX+Y (ξ)| = |φX(ξ)||φY (ξ)| ≤ |φX(ξ)|.

Hence, ∫ ∞

−∞
|φX+Y (ξ)| dξ ≤

∫ ∞

−∞
|φX(ξ)| dξ < ∞.

We conclude that φX+Y is integrable and, therefore, that the random variable X + Y admits a
density. The posited claim of the lemma is a simple consequence of this fact.

Corollary D.3.5. Let Q̂P be as defined in (D.3.11). Then, for every t ∈ [0, T ] such that
Q̄P

t > 0, we have that
P[Q̂(P,n)

t ∈ (α,β]] → P[Q̂P
t ∈ (α,β]],

for every α,β ∈ R.

Proof. For every t such that Q̄P
t > 0, defining t̄ = supΦ−X̄P (t) and using the fact that X̂P is a

time-changed Brownian motion, we have

P[Q̂P
t = α] = P[Q̂P

t − Q̂P
t̄ + Q̂P

t̄ = α] = P[W (It(λ + µ2))−W (It̄(λ + µ2)) + Q̂P
t̄ = α].

Moreover, the definition of Q̂P leads us to conclude that the process Q̂P is itself Markov and
we get that the random variable W (It(λ + µ2)) − W (It̄(λ + µ2)) is normally distributed and
independent of Q̂P

t̄ . Hence, Lemma D.3.4 and the last display yield

P[Q̂P
t = α] = 0. (D.3.12)

In words, this means that the random variable Q̂P
t admits a density. By the same token, we get

also P[Q̂P
t = β] = 0. In other words, the random variable Q̂P

t does not charge the boundary of
the set (α,β), so by Portmanteau’s theorem and claim (D.3.10) of Corollary D.3.3, we have that
P[Q̂(P,n)

t ∈ (α,β)] → P[Q̂P
t ∈ (α,β)] as n →∞.
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D.4 Auxiliary Stochastic Control results

Here we prove that the probability of the sum of the queue lengths in tandem queue (when the
admissible sequence {µn} defined in (4.6.9) is used) being strictly greater than the length of
the pooled queue vanishes in the limit. Since we are concentrating solely on the performance
of the specific admissible sequence {µn}, we suppress from the notation the dependence of the
stochastic processes involved (queue lengths, netputs, etc.) on the service discipline. With this
convention, symbolically the result we aim to prove reads as

P[∃ t ∈ [0, T ] : Q
(1, n)
t + Q

(2, n)
t 4= Q

(P, n)
t ] → 0, as n →∞. (D.4.1)

Invoking Lemma 4.6.8, we conclude that the desired claim (D.4.1) is equivalent to

P[∃ t ∈ [0, T ] : Q
(1, n)
t + Q

(2, n)
t > Q

(P, n)
t ] → 0, as n →∞. (D.4.2)

Some simple algebra (similar to the calculations of the proof of Lemma 4.6.8), yields that the
statement (D.4.2) is, in turn, equivalent to

P[∃ t ∈ [0, T ] : L
(2, n)
t > L

(P, n)
t ] → 0, as n →∞. (D.4.3)

For all n, we define the following subset of the set S(n) introduced in (4.6.10):

R(n) = {(q1, q2) ∈ S(n) : q1 > 0 and q2 = 0}.

Next, we construct three sequences of random times in the following way

ξ(n)
1 = inf{t > 0 : (Q(1, n)

t , Q(2, n)
t ) ∈ nR(n)} ∧ T ;

χ(n)
i = inf{t > ξ(n)

i : (Q(1, n)
t , Q(2, n)

t ) /∈ nR(n)} ∧ T ; for i ≥ 1;

η(n)
i = inf{t > ξ(n)

i : N−
2 (nIt(µ2)) > N−

2 (nI
ξ(n)
i

(µ2))} ∧ T ; for i ≥ 1;

ξ(n)
i = inf{t > χ(n)

i−1 : (Q(1, n)
t , Q(2, n)

t ) ∈ nR(n)} ∧ T ; for i > 1.

It is obvious from their definitions that all three sequences of random times are, in fact, sequences
of stopping times with respect to the filtration {H(n)

t } constructed in Appendix B.3. Also, since
the driving Poisson processes N+

1 , N−
1 and N−

2 are assumed to be independent, for every i the
random variables χ(n)

i and η(n)
i are also independent.

A sequence of events of particular interest to us at the moment are the following

{∃ i : χ(n)
i > η(n)

i }. (D.4.4)

Let us describe the rationale behind our focus on these events. At each stopping time ξ(n)
i , the

tandem system is in such a position that the second queue is empty. The uncontrolled service
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process in the second station N−
2 (nI(µ2)) may meanwhile be serving at its given rate. In the

case that its exponential service is completed earlier than the service period of the controlled
process N−

1 (nI(µn)), the lower regulator in the second queue will increase, and that increase
will not be matched (as yet, at least) by the regulator in the pooled queue (as the pooled
buffer contains at least the content of the buffer of the first queue at that time). Looking at
the definition of the sequence {χ(n)

i }, we see that stating that the pair of queue lengths in the
tandem queue exits the region R(n) at the time χ(n)

i precisely means that a service in the first
station was completed at the time χ(n)

i . The probability of the event in expression (D.4.4),
hence, dominates the probability from (D.4.3). Thus, our course of action is to prove that

P[∃ i : χ(n)
i > η

(n)
i ] → 0, as n →∞. (D.4.5)

For every n, let the set A(n) be defined as in (4.6.11). Then the probability in the display
(D.4.5) can be bounded from above as follows

P[∃ i : χ(n)
i > η(n)

i ] = P[{∃ i : χ(n)
i > η(n)

i } ∩A(n)] + P[{∃ i : χ(n)
i > η(n)

i } ∩ (A(n))c]

≤ P[{∃ i ≤ n1+ε : χ(n)
i > η(n)

i } ∩A(n)] + P[(A(n))c]

≤ P[∃ i ≤ n1+ε : χ(n)
i > η(n)

i ] + P[(A(n))c].

(D.4.6)

The first probability in the final line of (D.4.6) can be rewritten as

P[∃ i ≤ n1+ε : χ(n)
i > η

(n)
i ] = 1− P[∀ i ≤ n1+ε : χ(n)

i ≤ η
(n)
i ]. (D.4.7)

For every n, we can interpret the pairs of random variables χ(n)
i and η(n)

i for i ≤ n1+ε as the
times of the first jumps in a pair of Poisson processes. Due to the strong Markov property of the
state process (Q(1, n), Q(2, n)), for every n, we can assume that the pairs of Poisson processes are
independent. Along with Assumption 4.6.10, the above observations imply that Corollary D.1.3
is applicable to the probabilities stated in to the right-hand side of expression (D.4.7). Namely,
we get that

P[∃ i ≤ n1+ε : χ(n)
i > η

(n)
i ] → 0, as n →∞. (D.4.8)

Combining (D.4.8) and Lemma 4.6.13 with expression (D.4.6), we obtain the limit announced
in (D.4.5).

To sum up, we have just proven the following result.

Lemma D.4.1.

P[∃ t ∈ [0, T ] : Q
(1, n)
t + Q

(2, n)
t 4= Q

(P, n)
t ] → 0, as n →∞.
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D.5 Asymptotic Optimality - Finite Buffers: Proofs.

Lemma D.5.1. Let a, b and c be nonnegative real numbers. Then the following inequality holds
true.

a ∨ b− a ∨ c ≤ |b− c|.

Proof. Let us denote by d the term on the left-hand side of the posited inequality, i.e., let
d = a∨b−a∨c. We intend to simply exhaust all the possible cases, with respect to the ordering
of a, b and c.

• If a ≤ b ∧ c, then d = b− c ≤ |b− c|.

• If a ≥ b ∨ c, then d = 0 ≤ |b− c|.

• If b ≤ a ≤ c, then d = a− c ≤ 0 ≤ |b− c|.

• If c ≤ a ≤ b, then d = b− a ≤ b− c ≤ |b− c|.

The following is a restatement of Lemma 4.8.1.

Lemma D.5.2. Consider an admissible service discipline µ ∈ B. Then there exists a service
discipline µ̃ ∈ B such that the following relations hold almost surely:

1. L(1)(µ̃) ≡ 0;

2. U (2)(µ̃) ≡ 0;

3. U (1)(µ̃) ≤ U (1)(µ) + U (2)(µ).

Proof. It is useful to introduce the following sequence of random times of importance for the
tandem queue over the period [0, T ], i.e., the times of arrivals to the first station and times of
completion for services in the second station. Formally, we set

T0 = 0,

Ti = inf{t > Ti−1 : ∆N+
1 (It(λ)) + ∆N−

1 (It(µ)) + ∆N−
2 (It(µ2)) > 0},

(D.5.1)

for every i ≥ 1. In words, the sequence {Ti} records the times of arrivals and times of potential
departures from the first or the second station. Clearly, the random times introduced in the
last display are stopping times with respect to the filtration {H(n)

t }. Moreover, by independence
of the driving Poisson processes, it is almost sure that two events of importance never occur
simultaneously.
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Next, we tag two special subsequences of the sequence {Ti}.

F0 = 1,

Fi =

{
1 if Q(1)

Ti−1
−∆N−

1 (ITi(µ)) ≤ 0

0 otherwise
for every i ≥ 1,

G0 = 0,

Gi =

{
1 if Q(2)

Ti−1
+ ∆N−

1 (ITi(µ)) ≥ K2

0 otherwise
for every i ≥ 1.

The sequence {Fi} accounts for all the stopping times in the sequence {Ti} such that at that
time the first queue either sank to zero, or there was need to regulate the first queue to keep
it nonnegative. At the same time, the sequence {Gi} flags all the times among {Ti} such that
the second queue either gets to the level K2, or there is upper regulation necessary due to the
buffer capacity in the second station.

For all t ∈ [0, T ], we define a random index i(t) = sup{i ≥ 0 : Ti ≤ t}. That is, i(t) is the
unique integer such that t ∈ [Ti, Ti+1). Next, we set, for every t ∈ [Ti, Ti+1),

µ̃t =

{
0 if Fi(t) = 1 or Gi(t) = 1

µt if Fi(t) = Gi(t) = 0.
(D.5.2)

We still need to prove that µ̃ satisfies all the announced properties.
Admissibility. It is obvious from the construction that the control µ̃ depends in a non-

anticipating manner only on the processes adapted to the filtration {H(n)
t }. Thus, it is itself

{H(n)
t }-predictable.
The constraint placed on the total amount of service available is also satisfied, as the service

discipline µ̃ at all times either coincides with µ or vanishes. The function µ is itself admissible
and, thus, almost surely integrates to at most m.

Absence of Lower Regulation in the First Queue. Due to the first defining condition in the
first line of (D.5.2), the service µ̃ “shuts-off” whenever the first queue is at zero. Therefore there
is never any need for lower regulation in the first queue.

Absence of Upper Regulation in the Second Queue. The condition including the sequence of
tags {Gi} in the first case in definition (D.5.2) sets the service discipline µ̃ to zero at all times
when the second queue is at its threshold. This impedes any arrivals into the second station,
and thus, prevents all upper regulation in the second station.

Performance. For simplicity’s sake, we assume throughout the rest of this proof that the
buffer capacities K1 and K2 are both integer-valued. The general case involves one small change
in the instants at which these capacities are first reached.
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We give an inductive proof of the following claims:

Q(1)
t (µ) = Q(1)

t (µ̃), for every t ∈ [Ti−1, Ti) and every i ∈ N,

U (1)
t (µ̃) ≤ U (1)

t (µ) + U (2)
t (µ), for every t ∈ [Ti−1, Ti) and every i ∈ N,

Q(2)
t (µ) = Q(2)

t (µ̃), for every t ∈ [Ti−1, Ti) and every i ∈ N.

(D.5.3)

For i = 1, the claims in the above display read

Q(1)
t (µ) ≤ Q(1)

t (µ̃), for every t ∈ [0, T1),

U (1)
t (µ̃) ≤ U (1)

t (µ) + U (2)
t (µ), for every t ∈ [0, T1).

(D.5.4)

Since the queues are assumed to be initially empty, for any t ∈ [0, T1), both sides of the first
line in (D.5.4) are equal to N+

1 (It(λ)) = 0. Hence, the first claim is trivially satisfied.
Furthermore, clearly, there cannot be any need for upper regulation in either of the queues,

as they are both empty until the first arrival into the first station happens. Thus, both sides in
the second claim in (D.5.4) are equal to zero.

The length of the second queue is constantly equal to zero on this segment.
Assume that the claim (D.5.3) holds true for all indices smaller than or equal to an index i.

Let us prove that the index i + 1 necessarily verifies the claim. This will be conducted through
an exhaustion of all possible cases of events of importance occurring at time Ti.

Let Ti be such that ∆N+
1 (ITi(λ)) = 1. The change in the length of the first queue at time

Ti can be rewritten as

∆Q(1)
Ti

(µ) =

{
1 if Q(1)

Ti−1
(µ) + 1 ≤ K1,

0 if Q(1)
Ti−1

(µ) + 1 > K1.
(D.5.5)

By the same token

∆Q
(1)
Ti

(µ̃) =

{
1 if Q(1)

Ti−1
(µ̃) + 1 ≤ K1,

0 if Q(1)
Ti−1

(µ̃) + 1 > K1.
(D.5.6)

By assumption, Q(1)
t (µ̃) = Q(1)

t (µ), for every t ≤ Ti. Thus, using (D.5.3) and (D.5.6), we
conclude that Q(1)

Ti
(µ̃) = Q(1)

Ti
(µ), as well.

The exact same argument proves that ∆U (1)
Ti

(µ) = ∆U (1)
Ti

(µ̃). On the other hand, since there
are no new arrivals into the second station at time Ti, ∆U (2)

Ti
(µ) = 0. The inductive assumption

then yields

U (1)
Ti

(µ) + U (2)
Ti

(µ) = U (1)
Ti−(µ) + U (2)

Ti
(µ) + ∆U (1)

Ti
(µ)

≥ U (1)
Ti−(µ̃) + ∆U (1)

Ti
(µ̃)

= U (1)
Ti

(µ̃).

(D.5.7)
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As for the second queue, its length does not change at time Ti as there are no arrivals to this
queue or potential departures from it, so the third equality from (D.5.3) carries over directly by
the inductive assumption.

In order to be able to extend the claims which we just proved for the instant Ti, to the rest
of the interval [Ti, Ti+1), we need to verify that there are no new potential departures caused by
the service µ̃ during the period [Ti, Ti+1). However, since ∆N+

1 (ITi(λ)) = 1 in the present case,
we have Q(1)

Ti
(µ) > 0. By the definition of µ̃, for each t ∈ [Ti, Ti+1), µ̃t = µt. We see that the

instant of its first jump after time Ti when service rate µ is used coincides with the first jump
when µ̃ is used.

Summing up, there are no changes in any of the primitive processes until time Ti+1, so the
derived processes do not change either. The claim (D.5.3) is, thus, proven in this case.

In the second case, we assume that ∆N−
1 (ITi(µ)) = 1. The change in the length of the first

queue at time Ti is then

∆Q(1)
Ti

(µ) =

{
−1 if Q(1)

Ti−1
(µ) > 0

0 if Q(1)
Ti−1

(µ) = 0

=

{
−1 if Fi−1 = 0

0 if Fi−1 = 1.

(D.5.8)

Thus, the change in the first queue when the modified service discipline µ̃ is used equals

∆Q(1)
Ti

(µ̃) =

{
∆Q(1)

Ti
(µ) if Fi−1 = 0

0 if Fi−1 = 1.
(D.5.9)

Displays (D.5.8) and (D.5.9), together with the inductive assumption, give us that Q(1)
Ti

(µ̃) =
Q(1)

Ti
(µ). Clearly, the first queue remains constant over the rest of the random interval [Ti, Ti+1)

when µ is used. As for Q(1)(µ̃), depending on the value of the tags Fi and Gi, we have the
following cases to consider. If Fi = Gi = 0, the potential service processes clearly coincide, so
that the queues themselves agree, as well. If Fi = 1, then queues for both service disciplines
vanish over the random segment at hand. If Gi = 1 and Fi = 0, then the rate µ exceeds the rate
µ̃, which is set to zero. Combining all the stated cases, we get the validity of the claim (D.5.3).

Since there are no new arrivals into the first station at any time in [Ti, Ti+1), the upper
regulator does not increase over that period. As for the second station, when the service discipline
µ is used, we have

∆U
(2)
Ti

(µ) =

{
0 if Gi−1 = 0 or Fi−1 = 1

1 if Gi−1 = 1 and Fi−1 = 0.
(D.5.10)

On the other hand, for the effect of the service µ̃ at the time {Ti}, we need to first determine
the form of µ̃ in the preceding random interval.
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If Fi−1 = 1 or Gi−1 = 1, then µ = 0 throughout [Ti−1, Ti), and therefore ∆U (2)
Ti

(µ̃) = 0.
Alternatively, if Fi−1 = 0 and Gi−1 = 0, then µ̃ matches µ over that random interval, and the
first times a job is completed coincide for both service disciplines, i.e., ∆U (2)

Ti
(µ̃) = ∆U (2)

Ti
(µ) = 0,

by (D.5.10). Simple summation of the kind we have above yields

U
(1)
Ti

(µ̃) ≤ U
(1)
Ti

(µ) + U
(2)
Ti

(µ).

The result carries over to the rest of the random interval in (D.5.3) in the same fashion as the
one above.

The second queue itself has the increment of the following form at time Ti:

∆Q(2)
Ti

(µ) =

{
1 if Fi−1 = 0 and Gi−1 = 0

0 if Fi−1 = 1 or Gi−1 = 1.
(D.5.11)

On the other hand,

∆Q
(2)
Ti

(µ̃) =

{
1 if Fi−1 = 0 and Gi−1 = 0

0 if Fi−1 = 1 or Gi−1 = 1,
(D.5.12)

because the service discipline µ̃ is set to zero in the latter case in the above display. Therefore,
Q(2)

Ti
(µ̃) = Q(2)

Ti
(µ). A reiteration of the arguments used above for other processes extends this

equality to hold for every t < Ti+1.

Finally, there is a possibility that the event of importance Ti was triggered by a service
completion in the second station. Here, the first claim in (D.5.5) is trivially satisfied, as the first
queue remains unaltered when either service discipline is utilized.

There is no change in the upper regulators in the first queue or the second queue, as there
are no new arrivals into the either queue. This is seen easily using the same rationale as above,
which rests on the construction of the controlled service process.

The second queue is changed at time Ti by a (potential) jump down, regardless of whether
µ or µ̃ is used, so the equality in (D.5.5) is satisfied at time Ti. As for the rest of the random
interval [Ti, Ti+1), since there is a jump down at time Ti, we have Gi = 0. If Fi = 0, then the
service processes coincide, and the inductive claim holds true. In case that Fi = 1, we set µ̃ to
zero until time Ti+1. At the same time, there are no jumps in the service depending on µ by the
definition of {Ti}.

The following is a restatement of Lemma 4.8.2.

Lemma D.5.3. For all µ ∈ B∗, we have that

(i) LP ≤ L(2)(µ), almost surely;

(ii) U (1)(µ) ≥ UP , almost surely.
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Proof. Following the template of the proof of Lemma 4.5.2, we define the two sequences of
stopping times follows

χ1 = inf{t > 0 : QP
t = K} ∧ T,

ξi = inf{t > χi : QP
t = 0} ∧ T, for i ≥ 1,

χi = inf{t > ξi−1 : QP
t = K} ∧ T, for i > 1.

(D.5.13)

We fix an arbitrary admissible µ ∈ B∗ and conclude that, by definition,

N+
1 (I(λ)) ≥ N−

1 (I(µ)) + U (1)(µ) ≥ N−
1 (I(µ)). (D.5.14)

Again, we intend to use the principle of mathematical induction. On the segment [0,χ1], the
length of the pooled queue is

QP = XP + LP .

The lower regulator LP can be written for all t ∈ [0,χ1] as

LP
t = sup

s≤t
[−N+

1 (Is(λ)) + N−
2 (Is(µ2))].

Thanks to the inequality (D.5.14), we obtain

LP
t ≤ sup

s≤t
[−N−

1 (I(µ)) + N−
2 (Is(µ2))] = L(2)

t (µ).

Simultaneously, for every t ≤ χ1, we have that UP
t = 0. Due to the nonnegativity of the regulator

maps, the second announced inequality holds.
Next, we consider the segment [χ1, ξ1]. There is no lower regulation of the pooled queue in

this region, so we have that for every t ∈ [χ1, ξ1],

LP
t = LP

χ1
(D.5.15)

and, therefore,

QP
t = XP

t + LP
χ1
− UP

t .

The regulator maps are by definition nondecreasing, so the equality (D.5.15) and the validity of
the announced inequalities on the segment [0,χ1] yield

LP
t ≤ L(2)

χ1
(µ) ≤ L

(2)
t (µ), for every t ∈ [χ1, ξ1].

As for the inequality involving the upper regulators, we have that

UP
t = sup

s≤t
[N+

1 (Is(λ))−N−
2 (Is(µ2)) + LP

s −K]+, for every t ∈ [χ1, ξ1].
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Because the upper regulator UP increases only when QP = K, we can rewrite the last equality
using (D.5.15) as

UP
t = sup

χ1≤s≤t
[N+

1 (Is(λ))−N−
2 (Is(µ2)) + LP

χ1
−K]+

≤ sup
χ1≤s≤t

[N+
1 (Is(λ))−N−

1 (Is(µ))−K1]+

+ sup
χ1≤s≤t

[N−
1 (Is(µ))−N−

2 (Is(µ2)) + LP
χ1
−K2]+

≤ sup
s≤t

[N+
1 (Is(λ))−N−

1 (Is(µ))−K1]+ + sup
χ1≤s≤t

[Q(2)
s (µ)−K2]+.

= sup
s≤t

[N+
1 (Is(λ))−N−

1 (Is(µ))−K1]+ = U (1)
t (µ), for every t ∈ [χ1, ξ1].

Let us assume that the posited inequalities hold true on the entire region [0, ξi−1], for some
i ≥ 2. We will next prove that those claims necessarily carry over from the stated inductive
hypothesis to the segment [ξi−1, ξi].

For every t ∈ [ξi−1,χi] the pooled queue is strictly below the level K, so there is no need for
downward pushing, i.e.,

UP
t = UP

ξi−1
, for every t ∈ [ξi−1,χi]. (D.5.16)

Therefore,

QP
t = XP

t + LP
t − UP

ξi−1
,

and

LP
t = LP

ξi−1
∨ sup
ξi−1≤s≤χi

[−N+
1 (Is(λ)) + N−

2 (Is(µ2)) + UP
ξi−1

]+. (D.5.17)

From the inductive hypothesis, we conclude that

LP
ξi−1

≤ L(2)
ξi−1

(µ). (D.5.18)

At the same time, using (D.5.14), we get

sup
ξi−1≤s≤χi

[−N+
1 (Is(λ)) + N−

2 (Is(µ2)) + UP
ξi−1

]+

≤ sup
ξi−1≤s≤χi

[−N−
1 (Is(µ))− U (1)

s (µ) + N−
2 (Is(µ2)) + UP

ξi−1
]+.

Since the regulator maps are nondecreasing, using the inductive hypothesis, we get that the
quantity on the right-hand side of the last display is smaller than or equal to

sup
ξi−1≤s≤χi

[−N−
1 (Is(µ)) + N−

2 (Is(µ2))]+.
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Using the last upper bound in conjunction with (D.5.18) and (D.5.17), we obtain the desired
inequality.

The inequality involving the upper regulators is again a simple consequence of the mono-
tonicity of U (1) and (D.5.16).

Finally, we focus on the segment [χi, ξi]. Here, there is no need for lower regulation in the
pooled queue, so

LP
t = LP

χi
.

We can immediately conclude from the monotonicity of the lower regulator in the second queue
that the first proposed inequality holds true in this region.

For every t ∈ [χi, ξi], we have that

sup
χi≤s≤t

[N+
1 (Is(λ)) −N−

2 (Is(µ2)) + LP
χi
−K]+

≤ sup
χi≤s≤t

[N+
1 (Is(λ)) −N−

1 (Is(µ))−K1]+

+ sup
χi≤s≤t

[N−
1 (Is(µ))−N−

2 (Is(µ2)) + LP
χi
−K2]+.

(D.5.19)

According to the inductive hypothesis, the second term on the right-hand side of the last
equation is bounded from above by

sup
χi≤s≤t

[N−
1 (Is(µ))−N−

2 (Is(µ2)) + L(2)
s (µ)−K2]+ = sup

χi≤s≤t
[Q(2)

s (µ)−K2]+ = 0.

Next, we have that

UP
t = UP

χi
∨ sup
χi≤s≤t

[N+
1 (Is(λ)) −N−

2 (Is(µ2)) + LP
χi
−K]+.

Due to (D.5.19), the validity of the first proposed claim on the segment [ξi−1,χi], and the
last equality, we have

UP
t ≤ U (1)

χi
(µ) ∨ sup

χi≤s≤t
[N+

1 (Is(λ)) −N−
1 (Is(µ))−K1]+

= U (1)
t (µ), for every t ∈ [χi, ξi].
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