A Probability Distributions
Here are the basic facts about the probability distributions we will need in these lecture notes. For a much longer list of important distributions, check this wikipedia page.
A.1 Discrete distributions:
Note: \((q=1-p)\)
Parameters | Notation | Support | pmf | \({\mathbb{E}}[X]\) | \(\operatorname{Var}[X]\) | |
Bernoulli | \(p\in (0,1)\) | \(B(p)\) | \(\{0,1\}\) | \((q,p,0,0,\dots)\) | \(p\) | \(pq\) |
Binomial | \(n\in{\mathbb{N}}, p\in (0,1)\) | \(b(n,p)\) | \(\{0,1,\dots, n\}\) | \(\binom{n}{k} p^k q^{n-k}\) | \(np\) | \(npq\) |
Geometric | \(p\in (0,1)\) | \(g(p)\) | \(\{0,1,\dots\}\) | \(p q^k\) | \(q/p\) | \(q/p^2\) |
Poisson | \(\lambda\in(0,\infty)\) | \(P(\lambda)\) | \(\{0,1,\dots\}\) | \(e^{-\lambda} \tfrac{\lambda^k}{k!}\) | \(\lambda\) | \(\lambda\) |
A.2 Continuous distributions:
Note: the pdf is given by the formula in the table only on its support. It is equal to \(0\) outside of it.Parameters | Notation | Support | \({\mathbb{E}}[X]\) | \(\operatorname{Var}[X]\) | ||
Uniform | \(a\lt b\) | \(U(a,b)\) | \((a,b)\) | \(\frac{1}{b-a}\) | \(\frac{a+b}{2}\) | \(\frac{(b-a)^2}{12}\) |
Normal | \(\mu\in{\mathbb R},\sigma \gt 0\) | \(N(\mu,\sigma)\) | \({\mathbb R}\) | \(\frac{1}{\sigma \sqrt{2\pi}} e^{-\tfrac{(x-\mu)^2}{2 \sigma^2}}\) | \(\mu\) | \(\sigma^2\) |
Exponential | \(\lambda\gt 0\) | \(\operatorname{Exp}(\lambda)\) | \((0,\infty)\) | \(\lambda e^{-\lambda x}\) | \(\tfrac{1}{\lambda}\) | \(\frac{1}{\lambda^2}\) |