A Probability Distributions

Here are the basic facts about the probability distributions we will need in these lecture notes. For a much longer list of important distributions, check this wikipedia page.

A.1 Discrete distributions:

Note: \((q=1-p)\)

Parameters Notation Support pmf \({\mathbb{E}}[X]\) \(\operatorname{Var}[X]\)
Bernoulli \(p\in (0,1)\) \(B(p)\) \(\{0,1\}\) \((q,p,0,0,\dots)\) \(p\) \(pq\)
Binomial \(n\in{\mathbb{N}}, p\in (0,1)\) \(b(n,p)\) \(\{0,1,\dots, n\}\) \(\binom{n}{k} p^k q^{n-k}\) \(np\) \(npq\)
Geometric \(p\in (0,1)\) \(g(p)\) \(\{0,1,\dots\}\) \(p q^k\) \(q/p\) \(q/p^2\)
Poisson \(\lambda\in(0,\infty)\) \(P(\lambda)\) \(\{0,1,\dots\}\) \(e^{-\lambda} \tfrac{\lambda^k}{k!}\) \(\lambda\) \(\lambda\)

A.2 Continuous distributions:

Note: the pdf is given by the formula in the table only on its support. It is equal to \(0\) outside of it.
Parameters Notation Support pdf \({\mathbb{E}}[X]\) \(\operatorname{Var}[X]\)
Uniform \(a\lt b\) \(U(a,b)\) \((a,b)\) \(\frac{1}{b-a}\) \(\frac{a+b}{2}\) \(\frac{(b-a)^2}{12}\)
Normal \(\mu\in{\mathbb R},\sigma \gt 0\) \(N(\mu,\sigma)\) \({\mathbb R}\) \(\frac{1}{\sigma \sqrt{2\pi}} e^{-\tfrac{(x-\mu)^2}{2 \sigma^2}}\) \(\mu\) \(\sigma^2\)
Exponential \(\lambda\gt 0\) \(\operatorname{Exp}(\lambda)\) \((0,\infty)\) \(\lambda e^{-\lambda x}\) \(\tfrac{1}{\lambda}\) \(\frac{1}{\lambda^2}\)